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1. INTRODUCTION
The lack of subsurface data and the inherent subjectivity of 
interpreters have been major contributors to imprecise or 
overly simplified interpretations and resulting geological mod-
els. Well data are often too sparse to enable meaningful inter-
pretations using traditional methods, so the implementation of 
seismic data with advanced machine learning techniques is 
expected to yield better modelling results (SMIRNOFF et al., 
2008; ZHOU et al., 2019; FENG et al., 2024; ZHOU & LIU, 
2024). Machine learning techniques enable the combination 
of well and seismic derived properties in a time efficient way 
which can greatly improve the accuracy and the resolution of 
the resulting geological model. 

Visualizing subsurface lithology, including the volume 
and spatial distribution of rock types, typically starts with well 
data. This generally refers to well logs and information about 
the lithology of well cuttings and core samples if available. 
However, in many regions worldwide, the number of wells is 
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Abstract
The scarcity of well data and the inherent subjectivity of geological interpretations often 
leads to imprecise or oversimplified subsurface models. Traditional interpretation methods 
struggle with sparse datasets, necessitating the application of advanced machine learning 
techniques to enhance subsurface characterization. This study leverages artificial neural 
networks to predict lithology distribution using seismic attributes in the northern Croatian 
part of the Pannonian Basin System, an area with numerous exploratory wells. Seismic 
data, long employed as a supplementary interpretation tool, was used to generate a predic-
tive lithological model, overcoming data limitations inherent to well-based methods. A key 
focus was the volume of shale, a lithological indicator, which was estimated using an ex-
tensive set of seismic attributes and processed through innovative data preparation tech-
niques for artificial neural network analysis. A comprehensive artificial neural network based 
modelling approach was implemented over a 4365 km² 3D seismic dataset, targeting Pan-
nonian (Late Miocene–Early Pliocene) sediments deposited in deltaic, turbiditic, and lacus-
trine environments. Results show that standardization of input data significantly improved 
model accuracy, particularly in capturing key geological features such as meandering sand-
stone-filled channels. In contrast, normalization led to unreliable predictions, while raw da-
ta substantially underestimated sandstone volumes. Despite its advantages, the method’s 
limitations stem from the inherent uncertainty in the volume of shale estimation and inter-
preter subjectivity. The approach is well-suited for geological settings with two or three 
dominant lithologies distinguishable on geophysical well logs. While applicable to coal-
bearing strata and shale-rich carbonates, its effectiveness in more complex geological set-
tings requires further refinement. The findings highlight the untapped potential of legacy 
seismic data for geo-energy applications, including hydrocarbon exploration, geothermal 
studies, and carbon storage.

limited, they are either sparsely distributed, or the available 
data is old. The Croatian part of the Pannonian Basin System 
is characterized by a several hundred, old exploratory wells, 
some of which were drilled over 50 years ago. Therefore, 
seismic data has long been used as a supplementary tool to aid 
the geological interpretation process, offering valuable insights 
into subsurface characterization (NOVAK ZELENIKA et al., 
2018; VUKADIN, 2022; XU & HAQ, 2022). In recent years, 
this type of study has increasingly relied on the application of 
artificial neural networks for various purposes: lithology 
prediction (BRCKOVIĆ et al., 2017; KAMENSKI et al., 2020), 
estimation of porosity and permeability (ITURRARÁN-
VIVEROS & PARRA, 2014), seismic reservoir characterization 
(OTHMAN et al., 2021), shale volume prediction (TAHERI et 
al., 2021; MOHAMMADINIA et al., 2023), two-way-time 
prediction (KAMENSKI et al., 2024).

Recent studies in northern Croatia, specifically within the 
southwestern part of the Pannonian Basin System, have 
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explored the application of neural networks to enhance the 
independence and accuracy of subsurface interpretations 
based on various geophysical datasets (seismics, well logs),  
in combination with well data (BRCKOVIĆ et al., 2017; 
KAMENSKI et al., 2020; KAMENSKI et al., 2024). These 
studies demonstrated the effectiveness of neural networks, 
particularly in scenarios with limited data. For instance, the 
inevitable challenges of time-to-depth conversions were 
successfully surpassed using neural networks, which predicted 
two-way-time data from stratigraphical and petrophysical 
parameters in the depth domain, particularly in scenarios 
where conventional time-to-depth conversion data were 
unavailable (KAMENSKI et al., 2024). Efforts have also been 
made to predict lithology based on sparse well and seismic 
data (BRCKOVIĆ et al., 2017; KAMENSKI et al., 2020). 
These investigations provided valuable new insights into 
subsurface characterization in northern Croatia, while also 
highlighting challenges of lithology prediction, such as the 
inadequate upscaling of well logs (KAMENSKI et al., 2020).

To determine the lithology distribution in areas where 
only seismic data is available and well data is sparse, this study 
utilized an extensive set of seismic attributes to predict the 
volume of shale, a parameter that serves as an indicator of 
lithology distribution. Furthermore, this approach was tested 
with legacy data, as pre-stack seismic data, which can be 
utilized for lithology prediction, is often unavailable (ADEOTI 
et al., 2017; BORNARD et al., 2005). To achieve this, 
innovative data preparation processes were implemented. 

This study highlights the successful application of 
available legacy data, revealing its substantial untapped 
potential that has yet to be fully utilized when processed by 
artificial neural network algorithms. Neural networks were 
chosen for lithology distribution prediction over other machine 
learning approaches for several key reasons. Primarily, neural 
networks represent an excellent tool for capturing complex, 
non-linear relationships inherent in geological data, which 
makes them well-suited for modelling intricate subsurface 
patterns. Additionally, they have proven successful in similar 
applications, such as predicting porosity and permeability 
(e.g., ITURRARÁN-VIVEROS & PARRA, 2014), further 
validating their effectiveness in geoscientific tasks. To 
demonstrate this approach, a study area with available 3D 
seismic data, covering 4365 km2 in the northern part of Croatia 
was selected (Fig. 1) to investigate the possibility of predicting 
the general lithology distribution within the Pannonian 
stratigraphic interval based on seismic attributes.

Results from this study can have application in geo-
energy characterization for various purposes, from hydro
carbon exploration, geothermal investigations, carbon capture, 
utilization and storage, etc.

2. GEOLOGICAL OVERVIEW
The study area, located in the North Croatian Basin (NCB), 
lies within the southwestern part of the Pannonian Basin Sys-
tem (PBS). Base of the Neogene-Quaternary infill is repre-
sented by Palaeozoic crystalline and partially metamorphosed 
rocks, which are in places overlain by Mesozoic carbonates 
(PAMIĆ & LANPHERE, 1991; PAMIĆ, 1998; PAVELIĆ, 

2001; VELIĆ, 2007; MALVIĆ & CVETKOVIĆ, 2013; 
PAVELIĆ & KOVAČIĆ, 2018). Basin evolution is associated 
with rifting, and syn-rift and post-rift sediments can be distin-
guished (LUČIĆ et al., 2001; SAFTIĆ et al., 2003; PAVELIĆ 
& KOVAČIĆ, 2018; RUKAVINA et al., 2023). The extension 
began during the Ottnangian and Carpathian and is believed 
to have been driven by the eastward extrusion of the Alps 
(FODOR et al., 1999). In these conditions, deposition of 
coarse-grained sediments (rock-fall breccias and conglo
merates) interlayered with sandy and silty layers took place 
(PAVELIĆ & KOVAČIĆ, 2018). The extension was accom
panied by a later marine transgression and volcanic activity in 
the Badenian (LUČIĆ et al., 2001; SAFTIĆ et al., 2003; 
ĆORIĆ et al., 2009; MARKOVIĆ et al., 2021). Depositional 
environments during the Badenian were very diverse. Locally, 
marsh-type fine-grained sediments can be found, which are 
overlain by carbonate deposits (BAKRAČ et al., 2010). Deep-
ening of the depositional environment resulted in the lacus-
trine sedimentation of shales, and siltstones, together with 
thin, sandy turbidites and occasional conglomerates (PAVELIĆ 
& KOVAČIĆ, 2018), with sporadic occurrences of pyroclastics 
resulting from accompanying volcanism (PAVELIĆ, 2001; 
SAFTIĆ et al., 2003). A change of depositional environment 
from lacustrine to marine occurred during the Middle Bade-
nian with deposition of shales interlayered with coarse grained 
clastics (PAVELIĆ & KOVAČIĆ, 2018). The Late Badenian is 
characterized by the end of the syn-rift phase and the begin-
ning of the post-rift phase (PAVELIĆ, 2001; PAVELIĆ & 
KOVAČIĆ, 2018). During the Late Badenian, carbonate sedi-
mentation on small carbonate platforms, formed around is-
lands, was followed by marl deposition in the deeper parts of 
the sea (VRSALJKO et al., 2006; PAVELIĆ & KOVAČIĆ, 
2018). By the latest Badenian, a general shallowing occurred, 
marked by deposition of biocalcarenites and conglomerates, 
reduced volcanic activity, and localized emersions. The 
breakup of central Paratethys started in the latest Badenian 
when it lost connection to the Indo-Pacific Ocean and the pa-
laeo-Mediterranean Sea (RÖGL, 1999). The isolation of the 
basin and subsequent salinity fluctuations at the Badenian/
Sarmatian boundary led to the extinction of most stenohaline 
marine organisms, while unique associations adapted to the 
new conditions, emerged or migrated from Eastern Paratethys, 
marking the Sarmatian age of the deposits (PAVELIĆ & 
KOVAČIĆ, 2018 and references therein). The final separation 
of the Pannonian Basin System from other surrounding ma-
rine environments took place at the end of the Middle Miocene 
(ĆORIĆ et al., 2009).

The post-rift phase of PBS development was characterized 
by a thermal subsidence due to lithospheric cooling (PAVELIĆ 
& KOVAČIĆ, 2018), resulting in the creation of significant 
accommodation space. This phase was characterized by the 
deposition of thick sand and marl sequences in brackish 
conditions within Lake Pannon (LUČIĆ et al., 2001; SAFTIĆ 
et al., 2003; PAVELIĆ & KOVAČIĆ, 2018). During the 
Pliocene and Quaternary, the stress regime turned to com
pressional, which resulted in activation of reverse faults and 
reactivation of normal faults with reverse displacement char
acteristics (HORVÁTH & CLOETINGH, 1996). Sedimentary 
environments were shallower than in the Pannonian with 
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f luctuations from lacustrine and marsh to terrestrial 
(CVETKOVIĆ, 2013). Lithologically, they are represented by 
sands, clays and gravel with occasional coal seams or layers. 
As the tectonic regime shifted from extensional to com
pressional, basin inversion occurred which led to the formation 
of structural traps within the older Pannonian sediments. 

The NCB’s marginal position within the PBS results in 
generally thinner Neogene sedimentary sequences compared 
to the central part of the PBS, with the exception of the Drava 
Basin where the Neogene sedimentary sequence reaches a 
thickness of almost seven kilometres (SAFTIĆ et al., 2003; 
VELIĆ, 2007; CVETKOVIĆ et al., 2019).

The focus of this research is the sediments of the 
Pannonian (Late Miocene–Early Pliocene), that were deposited 
after the Central Paratethys Sea transitioned into the brackish 
Lake Pannon around 11.6 million years ago. Pannonian 

sediments, primarily derived from the Eastern Alps and the 
Western Carpathians, were deposited in a variety of 
environments, including deltaic, turbiditic, and lacustrine 
settings (KOVAČIĆ & GRIZELJ, 2006; PAVELIĆ & 
KOVAČIĆ, 2018; MATOŠEVIĆ et al., 2024a). The Pannonian 
deposits include lacustrine marls and limestones in the early 
stages, followed by sands and siltstones from deltaic 
environments as the lake progressively filled. These deposits 
serve as significant source rocks, reservoirs, and caprocks in 
the Croatian part of the PBS (LUČIĆ et al., 2001; SAFTIĆ et 
al., 2003).

3. METHODOLOGY
For the task of determining the spatial distribution of lithology 
throughout the study volume, a comprehensive workflow was 
implemented. This began with the definition of the model 

Figure 1. The Pannonian Basin System with the outline of the North Croatian Basin and the study area location. The red rectangle represents the extent 
of 3D seismic coverage of the “Donji Miholjac” 3D seismic block with the locations of 11 wells highlighted, enlarged in the inset at lower right corner 
(modified from Cvetković et al. (2019), after Dolton (2006) and Schmid et al. (2008)).
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boundaries. The top and bottom of the model were delineated 
based on regional well tops identified using resistivity well 
logs. For this study, focusing on the sediments of the Panno-
nian stratigraphic interval, the regional marker “α” was chosen 
as the model’s top surface and “Rs7” as its bottom, i.e. Top 
Pannonian and Base Pannonian surfaces respectively. Lateral 
boundaries were defined with the 3D seismic volume cover-
age.  

Exploratory wells within the study area were very scarce, 
so all the wells which at least partially intersected the chosen 
interval were taken into the analysis. A total of 11 wells were 
included: eight that drilled trough both the Top Pannonian 
(“α”) and Base Pannonian (“Rs7”) boundaries, and three which 
were terminated before reaching the Base of the Pannonian, 
i.e. intersecting only part of the interval of interest. The Top 
Pannonian well top (“α”) is not identified by distinct patterns 
in the apparent electrical resistivity curve. Instead, it is defined 
as the transition point where the resistivity curve shifts from 
a shallower zone with high variability in resistivity to a deeper 
zone characterized by more stable resistivity values. This 
transition is the result of change in depositional conditions, 
specifically the shift from deeper-water lacustrine sedimen
tation during the Pannonian to shallow lacustrine and alluvial 
sedimentation in the Pliocene of the Drava Basin and also in 
the western part of the Sava Basin, which is characterized by 
more frequent vertical and lateral lithological variations, 
reflected on the resistivity curve (CVETKOVIĆ, 2017). Well 
top “Rs7” was defined by an emphasized increase in resistivity 
values at the transition from the Lower Pannonian limey shales 
to the Middle Miocene limestone, due to pronounced resistivity 
differences between the limestones and shales (PALACKY, 
1988). A well to seismic tie was performed either on the basis 
of available vertical seismic profiling measurements in the 
wells or with the artificial neural network approach as in 
KAMENSKI et al. (2024).  These horizons were mapped across 
the “Donji Miholjac” 3D seismic block (Fig. 2), producing 
interpreted surfaces that defined a study area of 4,365 km² with 
a total volume of 11,660 km³.  

A volume of shale (Vsh) analysis was performed by 
interpreting the Spontaneous Potential (SP) log (Fig. 3), as 
Neutron, Spectral Radioactivity, Resistivity, and Gamma ray 
logs were excluded from the analysis due to technological and/
or geological constraints specific to the study area. This widely 
used procedure (SERRA, 1984; ASQUITH & KRYGOWSKI, 
2004) is based on the assumption that the SP deflection 
between the static value of SP (SSP) in a clean sandstone and 
shale baseline (representing 100% shale) is proportional to the 
volume of shale (RIDER, 2002), i.e. it assumes that the volume 
of shale at any given point can be estimated by linear 
interpolation between the SP value having 0% of shale (SPclean) 
and the shale baseline value (SPshale) having 100% of shale 
(Equation 1):

	 V SP SP
SP SPsh

clean

shale clean

=
-
-

×100	 (1)

where SP represents reading of SP value in any point of inter-
est.

Once the volume of shale (Vsh) values were obtained for 
all 11 wells, upscaling was performed to firstly average the Vsh 
value within the corresponding model cell and to enable 
integration with the seismic data. This was performed for 
models with 20, 50, 100 and 200 layers. Based on the results 
and to mitigate overestimation of the predominant lithology, 
the selected model was the one stratified into 200 layers, 
maintaining an average cell height of 6.5 metres. This approach 
effectively prevented excessive layering thickness, ensuring 
that the upscaling process did not introduce biases in lithology 
distribution predictions by the artificial neural networks 
(ANNs). Overestimation of the predominant lithology had 
been a significant challenge in previous studies (KAMENSKI 
et al., 2020), but this refined layering strategy minimized such 
distortions.

Following the upscaling of the volume of shale (Vsh) 
values, selected seismic attributes were extracted at the 
upscaled data points, forming a comprehensive dataset for 
ANN training. This step ensured that the model retained both 
the geological resolution necessary for more realistic lithology 
prediction and the statistically valid dataset required for 
effective machine learning applications.

Seismic attributes contain a huge amount of data which 
holds significant relationships between the physical charac
teristics that remain undetectable through conventional 
seismic visualization techniques (TANER et al., 1976; 
TANER, 2001). These attributes, derived from seismic data, 
capture kinematic, dynamic, geometric, and statistical charac
teristics, play a fundamental role in structural, stratigraphic, 
and petrophysical interpretation. Their application significantly 
enhances subsurface analysis and reservoir characterization 
(DJEDDI, 2016).

In this study, the selection of seismic attributes was guided 
by their ability to emphasize lithological and morphological 
features, thereby aiding artificial neural networks in producing 
geologically coherent lithology distribution predictions. Seis
mic attributes that capture key lithological and morphological 
features were generated based on comprehensive reviews of 
seismic attribute application (CHOPRA & MARFURT, 2006; 
LIU & MARFURT, 2006; KER et al., 2014; BRCKOVIĆ et 
al., 2017; LI et al., 2019; OUMAROU et al., 2021). Twelve 
attributes were constructed: Sweetness, 3D Curvature, Vari

Figure 2. Inline seismic section highlighting the interpreted Top and Base 
Pannonian surfaces of the subsurface model. The inset indicates the loca-
tion of the seismic section within the study area.
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ance, Original Amplitude, Instantaneous Frequency, Envelope, 
Instantaneous Phase, Generalized Spectral Decomposition, 
Apparent Polarity, Reflection Intensity, Root-Mean-Square 
(RMS) Amplitude and Relative Acoustic Impedance.

Sweetness and RMS Amplitude effectively detect and 
display coarse-grained intervals and compaction features 
(SUBRAHMANYAM & RAO, 2008; KOSON et al., 2014). 
Variance (edge) and Reflection Intensity serve as reliable 
indicators of lithology variations (PIGOTT et al., 2013; 
KOSON et al., 2014), while Original Amplitude provides a 
clear representation of sediment continuity and discontinuity 
(BRCKOVIĆ et al., 2017 and references therein). Additionally, 
Apparent Polarity is mostly related to the useful detection of 
gas-charged layers (KER et al., 2014).

OUMAROU et al. (2021, and references therein) de
monstrated that Instantaneous Frequency aids in seismic facies 
recognition, while 3D Curvature is crucial for identifying 
structural features such as channels, faults, anticlines, 
synclines, and salt domes. Instantaneous Phase delineates 
subsurface layering, whereas Instantaneous Frequency and 
Generalized Spectral Decomposition assist in layer thickness 
estimation and seismic geomorphology analysis (LIU & 
MARFURT, 2006; LI et al., 2019). Furthermore, Envelope and 
Relative Acoustic Impedance (RAI) provide insights into 
lithology, thickness estimation, and sequence delineation, and 
offer valuable information regarding porosity and permeability 
(OUMAROU et al., 2021; PIGOTT et al., 2013; KOSON et al., 
2014).

Input data for ANN analysis consisted of data points 
created along well paths, each containing X, Y, Z coordinates, 
12 seismic attributes and shale volume values (Fig. 4a, b). Data 
was statistically processed before the ANN training process. 
Feature scaling was applied to mitigate the significant scale 
differences among seismic attributes. Three input versions 
were prepared: Raw data, Normalized data (rescaled between 
0 and 1), and Standardized data (centered at a mean of 0 with 
a standard deviation of 1). Normalization and standardization 
processes ensured uniform scaling across all features, includ
ing seismic attributes and volume of shale values, which 
inherently range from 0 to 1. 

Data normalization was performed using following 
Equation 2:

	 x x
x xnormalized
max

=
-
-( )

( )

min

x
min 	 (2)

Data standardization was performed using following 
Equation 3:

	 x of range
standardized =

-( )x mean

standard deviation of range
	 (3)

ANN analysis was performed in Tibco Statistica within 
the Statistica (Neural Nets) module. The process consists of 
the general selection of the ANN architecture constraints 
(minimum and maximum number of neurons in the hidden 
layer, activation functions and number of networks to be 
trained and retained), and the distribution of data into training, 
test and validation datasets. In this study, 80% of the cases 
were used for the training dataset, while the remaining 20% 

Figure 3. Well logs for Well-1: the SP log is shown in red, the calculated 
volume of shale is represented in blue, and resistivity logs in both red and 
blue. Green and black horizontal lines indicate the regional markers “α” 
and “Rs7”.
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was evenly split between testing and validation. The number 
of iterations of the learning process is not strictly defined but 
is in the function of the prediction error decay. The learning 
process stops when the error on the training dataset does not 
significantly change or the error value is extremely variable 
for 20 consecutive iterations. The workflow follows three 
possible end conditions. The first occurs when optimal 
parameters are achieved, ensuring accurate predictions. The 
second arises when the ANN algorithm fails to predict the 
target variable, resulting in random output values. The third 
end condition is triggered when error values in the test and 
validation dataset begin to rise, indicating overtraining of the 
ANN. In all cases, the final network parameters are determined 
based on their optimal performance across the training, test, 
and validation datasets. 

For prediction, 747,800 cells were generated within the 
geological model (Fig. 4c, d), with appended seismic attribute 
values. The trained ANNs (using Raw, Standardized, and 
Normalized datasets) were applied to predict shale volume for 
each cell. 

Well-log interpretation was performed using Interactive 
Petrophysics (IP 2021) software, Petrel Schlumberger software 
package was used for seismic interpretation, attribute extrac
tion, and model construction, and Statistica Tibco for ANN 
analysis. Additional calculations were performed in Excel.

4. RESULTS
Four subsurface models were constructed to determine the op-
timal layer thickness for the training and prediction process. 
These models varied only in the number of layers, which were 
set to 20, 100 and 200. The corresponding vertical point spac-

ings for these models were an average of 79 m, 16 m and 8 m, 
respectively. The layering itself has an impact on the analysis 
in two ways. First, the layer height has a direct effect on the 
upscaling of the Vsh and seismic attribute values. As the layer 
thickness increases, more values will be averaged represent-
ing one data point in the well trajectory (Fig. 4b). Secondly, 
the number of cases for the ANN analysis significantly de-
creases from 1888 for the 200-layer case to 193 for the 20-layer 
case. This has a significant impact on the degree of success of 
the ANNs training process as it is sensitive to the number of 
cases for analysis (ALWOSHEEL et al., 2018).

Numerous iterations of the ANN parameters were tested 
to obtain the best output, as determined by correlation 
coefficients. The optimal neural network architecture was 
achieved with a learning rate of 80%, using a neural 
architecture search as the optimizer and the correlation 
coefficient as the error metric. Regarding predictions based on 
standardized and normalized data, the logistic sigmoid 
function proved to be the best activation function for both the 
hidden and output layers. In contrast, for raw data, best 
performance was obtained using the logistic sigmoid function 
for the hidden layer and the sinusoidal function for the output 
layer. The predictive performance of ANNs for the volume of 
shale values was evaluated using correlation coefficients of the 
target (interpreted Vsh value) and the predicted value of Vsh 
(Table 1), with the correlation coefficient serving as the 
primary metric for distinguishing between high- and low-
efficient neural networks. The highest predictive accuracy was 
achieved in the model with most layers (Table 1, Model 200 
layers). Among the tested models, the ANN trained on input 
data from the 200-layer model demonstrated to be the most 
successful and was therefore selected for further investigation 
(Table 1). ANNs trained on models with less than 100 layers 
had poorer performance (20-layer model) or were completely 
unable to predict the Vsh data (50-layer model which was 
omitted from the study).

To predict the volume of shale across the entire 3D seismic 
coverage, a model with 747,800 cells was generated (Fig. 4c, 
d), each containing values from 12 selected seismic attributes. 
These input data were processed using the same methodology 
as the training dataset. The most effective ANN architecture 
was then deployed to predict the volume of shale values across 

Figure 4. a, b) The blue surface represents the Top Pannonian surface, 
while the purple surface denotes the Base Pannonian surface. Red points 
indicate cells containing values for 12 seismic attributes and volume of 
shale (Vsh), which served as training input data for the artificial neural net-
works (ANNs); c, d) White points represent the data points where ANN 
predicted the volume of shale (Vsh) based on assigned seismic attribute 
values.

Table 1. Correlation coefficients representing the performance of artificial 
neural networks for the three differently layered models. Bold results rep-
resent the model which is selected for artificial neural network analysis to 
predict the volume of shale values throughout the investigated area. The 
network architecture is represented by the number of neurons in the input, 
hidden and output layer, while the number in brackets indicates the num-
ber of learning iterations.

Input data
Correlation coefficients

Model 20 layers Model 100 layers Model 200 layers

Raw 0.34 0.49 0.68
Normalized (Norm) 0.31 0.60 0.70
Standardized (STD) 0.33 0.43 0.72

Network architecture

Raw 12-123-1 (23) 12-161-1 (83) 12-128-1 (270)
Normalized (Norm) 12-181-1 (22) 12-138-1 (124) 12-145-1 (208)
Standardized (STD) 12-132-1 (21) 12-168-1 (92) 12-80-1 (209)
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mineral composition of the Pannonian sandstones, which are 
lithic arenites with significant content of calcite, feldspars and 
micas (MATOŠEVIĆ et al., 2023, 2024a, 2024b). Namely, PI-
MIENTA et al. (2019) indicate significant differences in the 
resistivities of quartz-rich sandstones and feldspar rich sand-
stones, the latter showing significantly lower resistivities 
which could result in overestimated values of shale volume. 
Gamma ray (GR) cannot be used in the studied settings for the 
same reason – the significant content of feldspars and micas 
in the Upper Miocene sandstones, i.e. their potassium content, 
affects the GR readings (IMAM & TREWIN, 1991) leading 
to overestimated volume of clay/shale values (KAMEL & 
MABROUK, 2003). The thorium content from the Spectral 
Radioactivity log could be considered (RIDER, 2002) in a 
given setting, but the problem was the availability of Spectral 
Radioactivity logs that are very rare for the study area.

SP should not be used to estimate shale volume in areas 
where formation water resistivity (Rw) is not much different 
from mud filtrate resistivity (Rmf) (KAMEL & MABROUK, 
2003), but that was not a limiting factor in the study area where 
the mud filtrate generally shows significantly different 
resistivity compared to the formation water. However, the 
shallower parts of the investigated unit/intervals could be 
affected by this limitation, due to the lower total dissolved 
solids (TDS) of the formation water, but short intervals of 
formation water salinity change mostly coincided with the 
upper boundary of the model – well top “α”, Top Pannonian 
surface.

The upscaled volume of shale values served as the input 
variable for modelling, ensuring continuity rather than discrete 
categorization, as seen in previous studies (BRCKOVIĆ et al., 
2017; KAMENSKI et al., 2020). This approach demonstrated 
the successful application of continuous input data in artificial 
neural networks, a methodology not commonly adopted in 
earlier research. Additionally, the upscaling process was 
carefully managed by implementing thin layering, effectively 
preventing overestimation of the predominant lithology. This 
was evident by the network performance increase with the 
increase of the number of layers within the geological model. 
Oversimplification in geological models with layers thicker 
than 16 metres led to poor performance or the complete 
inability of the ANN processing the input data to predict the 
Vsh. 

Based on the performance of the ANN training (Table 1, 
Model 200 layers), the best results were achieved using 
Standardized input data, followed by Normalized data and, 
lastly, Raw data. It is anticipated that Normalized or 
Standardized input data would yield better predictions, as Raw 
data contains original seismic attribute values that show 
significant variations and difference in magnitude. For 
example, the range of 3D Curvature spans from -0.56 to 2.33, 
Original Amplitude units range from -63,668.92 to 52,227.58, 
and Envelope values range from 459.39 to 73,946.72, while the 
volume of shale (Vsh) values range from 0 to 1. This high in
consistency in scale poses substantial challenges for ANNs to 
accurately predict Vsh from seismic attributes. The norma
lization and standardization processes enable a more balanced 
representation of the features, improving model performance. 

the target dataset, which consisted solely of 3D seismic 
attribute values. Table 1 demonstrates that standardized data 
produced the most efficient ANN predictions, whereas raw 
datasets yielded the least accurate predictions (Table 1, Model 
200 layers).

Predicted shale volume values were categorized as 
follows: ≤0.5 as Sandstone, 0.5–0.7 as Sandstone-Shale, and 
≥0.7 as Shale. These classifications were upscaled for lithology 
modelling, resulting in three distinct models corresponding to 
Raw, Standardized, and Normalized input data (Fig. 5).

The predicted lithology distribution for the model 
constructed from standardized (STD) input data suggests 
52.17% Shale, 29.89% Sandstone-Shale and 17.94% Sandstone. 
For the model based on normalized (Norm) input data, the 
distribution was 55.14% Shale, 42.59% Sandstone-Shale, and 
2.27% Sandstone. Predictions from raw (Raw) input data 
resulted in 38.12% Shale, 48.57% Sandstone-Shale, 13.31% 
Sandstone.

5. DISCUSSION
The volume of shale (Vsh) was calculated from the Spontane-
ous Potential (SP) log. The Neutron log was not used due to 
the simple fact that only small intervals in the wells had a neu-
tron log recorded, so in order to preserve consistency across 
the investigated interval, the electrolog was expected to be a 
better solution. Also, the Neutron log is, due to its shallow 
depth of penetration and consequential effect of wellbore con-
ditions caused by the increased well diameter in clayey rocks, 
prone to misleading volume of shale estimates (KAMAYOU 
et al., 2021). The Resistivity log was not used because of the 

Figure 5. Lithology models developed using predicted volumes of shale 
values derived from: a, b) Standardized (STD) input data; c, d) Normalized 
(Norm) input data; and e, f) Raw input data.
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Better performance of standardization compared to 
normalization can be attributed to the original data being more 
accurately characterized by mean and standard deviation, 
resulting in a standardized value range of -10.53 to 14.13, as 
opposed to the constrained normalization range of 0 to 1. 
These findings strongly suggest that preprocessing data, either 
by standardization or normalization, is essential for accurately 
predicting the volume of shale values from seismic attributes.  

However, the results from lithology modelling offer 
distinct insights into the impact of data preprocessing on 
model accuracy and geological consistency. While pre
processing input data generally improves model performance, 
this study confirms that the benefits are particularly pronounced 
when using Standardized input data. The lithological model 
generated with STD data produced results that align closely 
with geological expectations, exhibiting features such as well-
developed meander channels filled with sandstones. These 
results are not only statistically reliable but also geologically 
meaningful, as they are supported by numerous independent 
geological studies (ŠPELIĆ et al., 2023; PAVELIĆ & 
KOVAČIĆ, 2018 and references therein). The enhanced 
accuracy of this model suggests that standardization effectively 
preserves and enhances key lithological trends within the 
dataset.

In contrast, models constructed using Normalized (Norm) 
input data produced less reliable predictions. In some cases, 
their performance was even inferior to models developed using 
Raw (unprocessed) data. This suggests that normalization may 
distort the original statistical relationships between variables, 
leading to a loss of critical geological information. Notably, 
the model derived from Raw input data exhibited a significant 
underestimation of the total volume of sandstones, highlighting 
the risks associated with inadequate preprocessing. The 
omission or misrepresentation of such key geological features 
could lead to inaccurate interpretations of reservoir quality, 
depositional environments, or resource potential.

These findings underscore the crucial role of data 
preprocessing in artificial neural network (ANN)-based 
lithology distribution modelling. Proper standardization of the 
input data has resulted in geologically accurate and statistically 
reliable models, reinforcing the importance of preprocessing 
in machine learning applications within geosciences. However, 
normalization appears to compromise model reliability, 
making it an unsuitable preprocessing method for lithological 
modelling. As a result, careful selection of preprocessing 
techniques is essential for ensuring reliable, geologically 
consistent predictions in lithology modelling. This study 
proved that combining machine learning with traditional 
geological methods holds great potential for improving pre
dictive capabilities in the geosciences.

The approach presented here is applicable in geological 
settings characterized by the relative uniformity of lithological 
composition, i.e. in settings with two to three main distinctive 
lithologies that can be distinguished based on the geophysical 
exploration data from wells. This approach is therefore 
expected to be applicable in constructing the model of coal 
bearing strata, where the Density log could be used to identify 
different lithological categories. It could also be used for the 

characterization of shale-rich carbonates, i.e. the spatial 
zonation of carbonate reservoirs with respect to shale volume. 
Modelling the spatial distribution of lithological composition 
prior to porosity modelling can be beneficial, as each 
lithological category can be associated with a specific porosity 
range (KOLENKOVIĆ MOČILAC et al., 2022). This approach 
allows the lithological model to control the porosity model, 
therefore representing a significant improvement over a simple 
sandstone-shale system. Additionally, the methodology offers 
potential for various geo-energy explorations, including 
hydrocarbon and geothermal explorations, as well as CO2 
storage assessments. However, in more complex lithological 
settings, this methodology would require further refinement 
and development to achieve optimal accuracy. 

The transfer of this methodology to other settings is 
conditioned not only by geological characteristics but also by 
differences in the input data set. The presented methodology 
is limited to 3D seismic data due to the usage of a large number 
of attributes, some of which are not at all suited for calculation 
on 2D seismic data. Furthermore, the effectiveness of 
standardization over normalization is linked to the specific 
numerical value ranges of the seismic attributes in this study. 
These ranges are not necessarily the same for all 3D volumes, 
meaning that in other cases, normalization may yield better 
results. Therefore, the transferability of direct ANN parameters 
to other regions with different input data is not expected to be 
as successful; however, the developed methodology concept 
has high potential to improve lithology prediction across 
diverse geological settings.

6. CONCLUSION
This study presents an ANN approach for determining the 
subsurface lithology distribution based on well log and 3D 
seismic data. The importance of data preprocessing in ANN-
based lithology modelling is highlighted. Standardized input 
data produced geologically consistent results, accurately rep-
resenting key features including fluvial meander channels 
filled with sandstones. In contrast, models using Normalized 
data were less reliable, sometimes even underperforming com-
pared to those using Raw data, which significantly underesti-
mated sandstone volume. These findings emphasize that stan-
dardization enhances model accuracy, while normalization 
should be avoided as it can compromise lithology predictions.

The limitations of the approach presented in this work are 
mainly related to the estimation of the volume of shale, since 
the volume of shale represents a key input parameter, and its 
estimate is influenced by the available dataset as well as 
specific geological settings. Furthermore, there is a certain 
amount of subjectivity of the interpreter affecting the final 
result, but these issues are inherent to all analyses which are 
influenced by the volume of shale parameter.

The approach is suitable for geological settings with two 
to three main lithologies, distinguishable through geophysical 
well data. It can be applied to coal-bearing strata using Density 
logs or to shale-rich carbonates for reservoir zonation. How
ever, for geologically complex settings, it requires significant 
refinement.
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