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1. INTRODUCTION
In recent years, a large number of high dams, large reservoirs and 
pumped storage power stations, usually accompanied by under-
ground powerhouses and other caverns, have been (and are) un-
der construction in China. In these construction projects, ex-
tremely complex seepage fields develop, especially when complex 
geological conditions are encountered and/or drainage galleries 
with arrays of densely-spaced drainage holes are arranged.

In general, the seepage flow in the vicinity of a high dam and 
an underground powerhouse are analyzed separately. However, 
after construction of a high dam and impoundment of the reser-
voir, a three-dimensional monolithic seepage field is formed in 
the dam, in the vicinity of the underground powerhouse and in 
the surrounding rock mass. This monolithic seepage field may be 
approximately regarded as the combination of free surface seep-
age flow, mainly in the dam body and the surrounding rock mass 
and seepage flow in the vicinity of galleries with arrays of 
densely-spaced drainage holes. The behaviour of the monolithic 
seepage field is directly related to the safe operation of the power 
station. Hence, the accurate numerical analysis of the complex 
monolithic seepage field, e.g. by means of the finite element 
method (FEM), is of great importance. 

Seepage flow with a free surface is usually analyzed on the 
basis of a fixed finite element mesh as originally proposed by 
Neuman (NEUMAN, 1973), because in contrast to adaptive mesh 
methods, unfavourable distortions of finite elements are avoided. 
On the basis of the fixed mesh method, different numeric tech-
niques have been proposed, such as the variable permeability 
method (BATHE et al., 1979), the residual flow method (DESAI 
& LI, 1983), the initial flow method (ZHANG et al., 1988), the 
virtual flux method (VFM) (ZHU & SU, 1991; ZHU, 1997), the 
variational inequality method (JANSEN et al., 1988), the refined 
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plication to a problem in engineering practice. 

Gauss point method (WANG & HUANG, 1997), the variational 
inequality method (ZHENG et al., 2005b) and related methods 
(SHU et al., 2007; ALT, 1980; WANG, 1998; ZHENG et al., 
2005a; BORJA & KISHNANI, 1991; GABRIELLA et al., 2016; 
AZUSA et al., 2018). However, for determining the free surface 
with higher accuracy, most of the aforementioned numerical 
methods require a very fine discretization, especially in the vi-
cinity of the free surface, which is computationally expensive for 
3D problems in engineering practice.

The FE analysis of seepage flow considering galleries with 
arrays of densely-spaced drainage holes involves two difficulties: 
one is the FE mesh generation of arrays of drainage holes with 
small diameters and dense spacing and the other is the determi-
nation of the free surface in the vicinity of the complex drainage 
system. To overcome these difficulties, either the equivalent per-
meability method or the direct method can be employed. In the 
equivalent permeability method, the drainage holes and the sur-
rounding rock mass are homogenized as a complex medium with 
an equivalent anisotropic permeability (CHEN et al., 2004; JING 
et al., 2005; CHEN et al., 2010). An advantage of this method is 
the simple generation of the FE mesh. However, it is not easy to 
determine the equivalent permeability tensor for the finite ele-
ments affected by drainage holes, and thus the drainage facilities 
cannot be described precisely. In the direct method, the drainage 
holes are regarded as internal drainage boundaries of the seepage 
field, which are modeled by a semi-analytical approach (FIPPS 
et al., 1986) or a substructure technique (ZHU & ZHANG, 1997; 
CHEN et al., 2008). The direct method allows considering drain-
age holes with a relatively high precision, but generation of the 
FE mesh is difficult and it is also computationally expensive. 

In this study, an improved virtual flux method (IVFM) for 
seepage flow with a free surface and a direct method for modeling 
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seepage flow in regions with densely-spaced drainage holes is 
proposed. After validation of the method by a academic example, 
it was employed for determining the monolithic seepage field 
formed in the vicinity of a high dam and underground power-
house, constructed in the context of a hydropower plant project 
in China.

2 METHODS
2.1. DESCRIPTION OF THE FREE SURFACE SEEPAGE 
PROBLEM 
Figure 1. shows the free surface seepage flow through a dam 
body. The dam is characterized by the domain W = W1  W2, how-
ever, seepage flow is actually restricted to the domain W1 Thus, 
the domain W1 can be referred to as the actual domain while the 
domain W2 can be denoted as the virtual domain. No seepage flow 
occurs through the free surface G3, which is the common boun

dary of domains W1 and W2. The total waterhead at a point in the 
domain W1 is defined as:
	 h = x3 + hc	 (1)
where x3 denotes the vertical coordinate, hc = p/gw the pressure 
water head, p the pore water pressure, and gw the unit weight of 
water.

The seepage velocity in the domain W1 can be calculated by 
Darcy’s law:
	 v = –kh	 (2)
where k is the permeability tensor and  represents the gradient 
operator.

The seepage flow satisfies the continuity equation:
	 v = 0	 (3)

According to Figure 1. the following boundary conditions 
are prescribed:

(1) The Dirichlet type boundary condition i.e. the waterhead 
boundary condition
	 h = h with h = h1 on G1 = BG and h = h2 on G1 = CD,	(4)
where G1 is the part of the boundary with the prescribed water-
head h.

(2) The Neumann type boundary condition i.e. the flux 
boundary condition
	 qn = –nT v = q on G2 = AG+AF+EF+BC	 (5)
where n and qn are the outward unit normal vector to the corre-
sponding part of the boundary and the respective prescribed flux 
in the direction normal to the boundary, respectively, and G2 is 
the part of the boundary with the prescribed flux.

(3) The Cauchy type boundary conditions
	 qn = 0 and h = x3	 (6)
on the free surface G3 = EG.

(4) The composite boundary conditions on the seepage sur-
face G4

	 qn ≥ 0  and  h = x3  on  G4 = DE	 (7)

2.2. FE FORMULATION OF FREE SURFACE SEEPAGE 
PROBLEMS
2.2.1. FE discretization of free surface seepage problems
For the free surface seepage problem shown in Fig. 1, the domain 
W = W1  W2 is divided into n finite elements. Within a particular 
finite element e, the total water head h is approximated by the 
vector of nodal water head values he and a vector of shape func-
tions Ne as h = (Ne)T he  (MAO et al., 1999). The corresponding 
pressure water head hc is then computed from Eq. (1). hc is posi-
tive within W1 and negative within W2. Hence, W1 is denoted as 
the actual domain of seepage flow, whereas W2 is denoted as the 
virtual domain. Accordingly, finite elements in the domain W1 
are denoted as actual finite elements, whereas finite elements in 
the domain W2 are denoted as virtual elements. Finite elements 
passed through by the free surface, which are characterized 
partly by hc > 0 and partly by hc < 0, are referred to as transition 
elements. 

Substituting Eq. (2) into Eq. (3), gives the governing differ-
ential equation. Discretization of the weak form of the governing 
differential equation yields the FE balance equation in the seep-
age domain W1

	 K1h = q1	 (8)
In (8) K1 denotes the global permeability matrix for the do-

main W1, obtained by assembling the element permeability ma-
trices ke located in domain W1, h denotes the vector of the un-
known nodal values of the total waterhead, and q1 represents the 
vector of nodal fluxes in W1 computed from prescribed values of 
the waterhead on G1 and G1. As the domain W1 and the seepage 
surface G4 are unknown in advance, the solution of the free sur-
face seepage problem cannot be obtained directly from Eq.(8). 
Hence, an iterative solution scheme is proposed. It is character-
ized by improving the virtual flux method (VFM) (ZHU & SU, 
1991; ZHU, 1997) by a refined Gauss point method combined 
with a regularized Heaviside function (CHEN et al., 2008) for 
determining the free surface.

2.2.2. Improved virtual flux method (IVFM)
As the domain W1 is unknown in advance, Eq. (8) is replaced by 
the respective FE balance equation for domain W
	 KH = q	 (9)
where K represents the global permeability matrix for domain W 
and q the corresponding flux vector computed from the pre-
scribed values of the waterhead.

The basic idea of the VFM is to determine the virtual domain 
W2 in an iterative manner and to gradually deduct the virtual flux 
contribution of the nodes in domain W2 until there is no flux 
across the interface between W1 and W2. The boundary conditions 
on the free surface G3 in Eq. (6) are then met automatically and 
the free surface can be identified by interpolating the water head 
according to the requirement of h = x3 within the transition ele-
ments.

Figure 1. Illustration of unconfined seepage through a dam body.
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Similarly, in Eq. (8), the FE balance equation for the virtual 
domain W2 is given as:
	 K2h = q2	 (10)
where K2 is the global permeability matrix for the domain W2 
and q2 denotes the corresponding nodal flux vector. 

From Eq. (8), Eq. (9) and Eq. (10) it then follows that
	 K1 = K – K2,  q1 = q – q2	 (11)

Substituting Eq. (11) into Eq. (8) yields the FE balance equa-
tion within the framework of the IVFM:
	 Kh = q – q2 + K2h	 (12)

Making use of Eq. (9) and Eq. (12), the iterative form of the 
IVFM can be written as
 
	 1

0
1−

 =


≥

i i

i i i i i

for i
for i2 2

Kh = q
Kh = q - q + K h

	 (13) 

with i denoting the iteration step; hi and qi are the nodal water-
head and the nodal flux vectors for the domain W at iteration step 
i, whereas K2 and q2 denote the permeability matrix and the flux 
vector for the virtual domain W2 at the respective iteration step.

In the IVFM, the solution of the free surface seepage prob-
lem is obtained by gradually modifying domain W2 and, hence, 
q2 and K2 in each iteration step. Based on the first estimate of the 
waterhead, computed from h0 in the first part of the Eq. (13), an 
initial estimate of the virtual domain W2 and, hence initial esti-
mates of K2 and q2, denoted as K2 and q2 in the second part of 
Eq. (13), is determined. Subsequently, the second part of  Eq. (13) 
is solved for hi, yielding an improved estimate of the waterhead 
and, consequently, an improved estimate of the domain W2. The 
iteration is continued until the convergence criterion for the nodal 
waterhead vector
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is met, where er denotes an error threshold value.
q2 represents the nodal flux vector in domain W2, which is 

contributed by the prescribed boundary values of the waterhead 
as well as by the prescribed boundary values of the flux. Hence, 
in general, non-zero items in q2 are only computed for transition 
elements with prescribed waterheads on G1 and G4. Since the con-
tribution from the latter is small compared to qi, qi

2 could be ne-
glected. 

Since the virtual domain consists of virtual elements and 
fractions of transition elements, K2 is obtained by assembling the 
permeability matrices ke of both the virtual elements and the re-
spective virtual fractions of the transition elements. Whereas cal-
culating ke for the virtual elements is straightforward, it is not for 
the virtual fractions of the transition elements. 

2.2.3 Permeability matrix ke of a transition element
The permeability matrix ke of a particular finite element e is ob-
tained by Gauss-Legendre integration, yielding for a three-di-
mensional iso-parametric finite element
	

	 ( , , )ξ η ζ= ∑ ∑ ∑e e
n n ng g g

i j m i j m
i j m

WW Wk F 	 (15) 

where ng is the number of integration points in each direction and 
Wi, Wj and Wm and Wm are the respective integration weights; 

( , , ) [( ) det ]ξ η ζ =e e T e e e
i j mF B k B J  is the integrand, evaluated at 

the integration point ( , , )i j mξ η ζ , with Be as the geometric ma-
trix, containing the derivatives of the shape functions and detJe 
as the determinant of the Jacobian matrix.

To compute the permeability matrix ke for a transition ele-
ment, a refined Gauss point method (WANG & HUANG, 1997) 
combined with a regularized Heaviside function (CHEN et al., 
2008) is implemented in the framework of the IVFM.

(1) The refined Gauss point method
A Gauss quadrature point in a transition element is either 

assigned to the virtual domain if its waterhead hc is negative 
or to the actual domain if hc is positive. For determining the 
contribution of the element permeability matrix ke to the global 
permeability matrix K2 for a transition element, the integration 
of ke is then carried out only for the Gauss points within the 
virtual domain. The accuracy of calculating ke can be im-
proved by increasing the number of Gauss points (SHU et al., 
2007), as shown in Fig. 2. In the developed code, up to 7 Gauss 
points in each direction may be used for a 3D iso-parametric 
finite element. The increase of the number of Gauss points has 
an effect similar to refining the mesh in the vicinity of the free 
surface. 

However, depending on the computed value of the waterhead 
hc at a particular Gauss point, the subregion of a finite element 
associated with this Gauss point is still entirely assigned to either 
the actual domain or the virtual domain. This shortcoming is 
shown for example in Fig. 3. If, for example, the free surface 
passes through the region between Gauss point I and node 1, the 
actual domain in the shaded part 1 would be wrongly treated as 

a virtual domain due to negative values of hc at all Gauss points 
of this element. Similarly, the virtual domain in the shaded part 
2 would be wrongly treated as an actual domain due to positive 
values of hc at all Gauss points of this element.

(2) The regularized Heaviside function
To overcome the aforementioned shortcoming, a regularized 

Heaviside function (SU et al., 1999; ZHANG & WU, 2005)

Figure 2. Illustration of the refined Gaussian points method in a 2D isoparamet-
ric element.

Figure 3. Illustration of the defects of the refined Gaussian points method.
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is introduced with the parameters e1 < 0 and e2 > 0 (Fig. 4(a)). For 
a 2D finite element Fig.4(b) illustrates the application of the reg-
ularized Heaviside function for the two cases shown in Fig. 3 and 
the definition of the regularization parameters e1 and e2.

By implementing the above regularized Heaviside function, 
the permeability matrix ek of the virtual domain in a transition 
element is computed as

(1 ( ( , , ))) ( , , )ε ξ η ζ ξ η ζ= −∑ ∑ ∑e e e
c

n n ng g g

i j m i j m i j m
i j m

WW W H hk F  (17)

where ( , , )e
c i j mh ξ η ζ  is the water head at the Gauss point

( , , )i j mξ η ζ .

2.2.4. Determination of the seepage surface
As expressed by Eq. (7), on the seepage surface G4 the flux is 
non-negative and the waterhead is equal to the vertical coordinate 
x3 of the respective point on the boundary. According to the 
equivalent nodal flux method proposed (ZHU & ZHANG, 1997), 
the total flux on the seepage surface is equivalent to the sum of 
the nodal values of the flux on the respective surface. Thus, the 
boundary condition for the seepage surface qn ≥ 0 is replaced by 
the condition qn ≥ 0 for the node i, located on the seepage surface. 

Since the seepage surface G4 = DE in Fig. 1 is unknown in 
advance, it is determined in an iterative manner. In the first ite
ration step, it is assumed that all nodes on the possible seepage 
surface DF in Fig. 1 satisfy the water head requirement h = x3. 
Then the fluxes at the nodes along DF are calculated. If, for a 
particular node  qn ≥ 0 holds, then the respective node is con-
sidered to belong to the seepage surface G4 in the next iteration 
step. 

2.3. CONSIDERATION OF DENSELY SPACED  
DRAINAGE HOLES
Drainage holes in hydraulic or geotechnical engineering are com-
monly classified into leakage drainage holes and overflow drain-
age holes according to the respective seepage behaviour. 

Figure 5. shows the drainage galleries and arrays of drainage 
holes arranged at the upstream side of an underground power-
house. Drainage holes of array 1 are drilled in upward direction 
from the roof of drainage gallery 1, while drainage holes of array 
2 and array 3 are drilled between the upper gallery and the lower 
gallery. In these drainage holes, shown in Fig. 6(a), the water leak-
age from the hole walls is discharged into the lower galleries. In 

this study, they are classified as leakage drainage holes satisfying 
the boundary conditions
	 qn = 0  and  h < x3  on  G = ab + a'b'	 (18)

	 qn ≥ 0  and  h < x3  on  G = bc + b'c'	 (19)
A leakage drainage hole is inactive if it is entirely located 

above the free seepage surface. In this study, drainage galleries 
are also treated as leakage drainage holes.

In Fig. 5, the drainage holes of array 4 are drilled in a down-
ward direction from the bottom of the lowest gallery and they are 
classified as overflow drainage holes since water flows freely 
from the top of these holes when the holes are filled with water. 

In this case, shown in Fig.6(b), the waterhead for nodes located 
on the hole wall is equal to that of the nodes at the orifice of the 
hole, i.e.
	 h = h' on G = ab + a'b' + b'b'	 (20)
where h' represents the waterhead at node a or a'.

The power of the modern computer allows the direct model-
ling of densely-spaced drainage holes of small diameter. In this 
study, the wall of each drainage hole is considered as an internal 
drainage boundary and is integrated into the overall numerical 
model for determining the free seepage surface. In the numerical 
simulation procedure, all the drainage holes are treated as boun

Figure 4. The continuous penalized Heaviside function and the two penalty 
parameters.

Figure 5. Drainage galleries and holes arranged in the upstream area of an un-
derground powerhouse under construction in China.

Figure 6. Seepage behaviours in two kinds of drainage holes (a) leakage drain-
age hole (b) overflow drainage hole.
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dary conditions. Hence, the related iteration is the same as the 
seepage surface by the IVFM. As a result, the overall seepage 
field and the seepage field in the vicinity of densely-spaced drain-
age holes are computed simultaneously.

For reasonable representation of well drainage holes with 
small diameters in a numerical model, a fine discretization is re-
quired in the vicinity of such drainage holes, whereas for the 
overall seepage field a considerably coarser discretization is em-
ployed. Hence, special attention has to be paid to the smooth tran-
sition between domains with fine and coarse meshing. In the pres-
ent context, as shown in Fig. 7, a substructure technique is 
implemented for generating FE meshes with densely-spaced 
drainage holes. The basic idea is to discretize the domain under 
consideration disregarding the drainage holes. Finite elements 
containing drainage holes serve as super-elements, which are 
subdivided further radially in the direction of the drainage holes 
into two or more layers of sub elements. The substructure tech-
nique allows eliminating nodal unknowns in the interior of the 
super-elements. The number of the drainage holes embedded in 
a super-element is determined from the size of the super-element 
and the spacing between two drainage holes. Figure 8. shows the 
planar graphs of various subdivisions in one super-element and 
Fig. 8 (a), (b), (c), (d), and (e) shows one hole two layers of sub-
elements, one hole three layers, one hole four layers, two holes 
four layers, and three holes four layers respectively.

In this direct simulation method, the operation of each drain-
age hole is controlled as follows. Assume that qt and qb denote the 
flux at the top and the bottom nodes of  a drainage hole, respec-
tively. A leakage drainage hole is inactive, if qb is negative, i.e. 
the drainage hole is located in the virtual domain above the free 
surface. Otherwise, the leakage drainage hole is active. An over-
flow drainage hole is only active if it is located entirely in the ac-
tual domain below the free surface, characterized by a positive 
value of qt.

The surface of an active leakage drainage hole satisfies the 
boundary conditions prescribed by Eq. (18) and Eq. (19), and the 
seepage surface is determined using the method presented in sec-
tion 3.3. Inactive leakage drainage holes are ignored. Generally, 
the boundary conditions of drainage galleries or tunnels are sim-
ilar to those of leakage drainage holes. Thus, drainage galleries 
or tunnels are treated like leakage drainage holes.

The surface of an active overflow drainage hole satisfies the 
boundary condition prescribed by Eq. (20). The waterhead at the 
nodes of the surface is usually equal to the vertical coordinate of 
the top node of the hole. If the overflow drainage hole is inactive, 
then the whole boundary is assumed to be impermeable.

Whether a drainage hole is active or inactive is determined 
in the course of the iterative solution procedure for the seepage 
surface, described in section 3.2. At the beginning of the first ite
ration step all drainage holes are assumed to be in the active 
state. Based on the results of the current iteration step, the fluxes 
qb for leakage drainage holes and the fluxes qt for overflow drain-
age holes are computed, then the states of the drainage holes are 
updated accordingly. Subsequently, the boundary conditions of 
the drainage holes are adapted appropriately for the next iteration 
step. The iteration will be terminated, if the states of all drainage 
holes do not change in two adjacent iteration steps and if the con-
vergence criterion (14) for the nodal waterhead vector is met.

3. RESULTS
3.1. Verification
The analytical solution for the free seepage surface in a homoge-
neous dam of rectangular shape is selected for verifying the 
IVFM. As shown in Fig. 9, the width and height of the dam were 

Figure 7. Construction of a drainage substructure.

Figure 8. Planar graphs of various subdivisions in one super-element (a) one 
hole two layers of sub-elements (b) one hole three layers (c) one hole four lay-
ers (d) two holes four layers and (e) three holes four layers.

Figure 9. A homogeneous dam of rectangular shape with drainage gallery and 
holes.
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chosen as 10.0m and 12.0m, respectively. The prescribed water-
heads at the upstream and downstream face are 10.0m and 2.0m, 
respectively. The foundation of the dam is considered as an im-
permeable boundary. The analytical solution of the free seepage 
surface is given (ZHOU et al., 1996) as:

	 1
1/2(100 8 )h x= − 	 (21)

A regular FE-mesh, consisting of quadrilateral finite ele-
ments with dimensions of 0.5m×0.5m, is used for discretizing the 
dam body.

Figure 10. shows the computed location of the seepage point 
at the downstream face, employing an increasing number of 
Gauss points for the numerical integration for consistently refined 
FE-meshes. It confirms that the numerical solution gradually ap-
proaches the analytical solution with an increasing number of 
Gauss points.

Figure 11. contains a comparison of the analytical solution 
for the free surface, obtained from Eq. (21), with numerical solu-
tions computed on the basis of the virtual flux method (VFM) 

(ZHU, 1991) and the present IVFM. The numerical solution by 
means of the VFM agrees well with the analytical solution, the 

IVFM allows even better reproduction of the analytical solution. 
Hence, the proposed IVFM can be employed for analyzing free 
surface seepage problems with a greater accuracy.

In a further step, a drainage gallery, characterized by a cross 
section of 1.0m×1.0m, a leakage drainage hole of 6.5 m height and 
a width of 0.05m and an overflow drainage hole with the size of 
1.5m length and 0.05 m width are considered in the above homoge
nous rectangular dam. The computed free seepage surface and 
the waterhead contours are shown in Fig. 12. It can be seen that 

the free surface depresses rapidly through the leakage drainage 
hole and towards the downstream water level when it passes 
through the drainage gallery and the overflow drainage hole is 
filled with water. 

3.2. Large-scale application in engineering practice 
In this section, the IVFM, extended by considering densely 
spaced drainage holes as internal boundaries according to section 
4, is applied for determining the monolithic seepage field in the 
vicinity of a hydropower station currently under construction in 
China. 

3.2.1. Hydrogeological features
The water conservancy project is located in an L-shaped bay area 
where the river is deeply-incised in a V-shaped valley. The river 
is always in a turbulent state and the altitude, depth and width of 
the river are about 676~678 m, 7~11 m and 60~80 m respectively. 
The right bank is the concave bank of the river while the left bank 
is the convex bank.

The thick river bed cover of the dam foundation consisted of 
a floating pebble layer, pebble layer,  sand - lens layer with a drift-
ing pebble layer and an erratic boulder layer. In general, the thick-
ness is about 40.0~60.0 m and can reach to 75.36 m in the deeply-
incised channel area. i) the floating pebble layer is mainly 
distributed in a grade II terrace of the left bank upstream of the 
dam axis with a thickness of 40~50 m. The front borehole of the 

Figure 10. The locations of the seepage points from IVFM with a different num-
ber of Gaussian points.

Figure 11. The locations of the free surface using the different methods.

Figure 12. The calculated waterhead distribution in the homogenous rectan-
gular dam.
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Figure 13. Plan view of the distribution of the hydropower station.

Figure 14. Typical section of the earth core rockfill dam in the hydropower station.

Figure 15. Three dimensional FE mesh.
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terrace shows that the maximum thickness is about 70.72 m and 
the altitude of the top surface of the layer is about 730.0~734.0 
m. The basal layer directly overlies the bedrock at an altitude of 
about 620.0~660.0 m. ii) this pebble layer is distributed in both a 
I grade terrace and the bottom of riverbed. The residual thickness 
at the base of the riverbed is about 22.0~32.0 m. The altitudes of 

Table 1. Permeability coefficients used in the calculation.

Material Permeability coefficient (cm/s)

Rockfill 1.00×10-1

Transition layer 3.00×10-2

Filter layer 5.00×10-3

Earth core 1.00×10-5

High-plastic clay 1.00×10-6

Rock 1 (Weakly weathered) 1.70×10-4

Concrete cut-off wall 1.00×10-7

Rock 2 3.00×10-5

Overburden layer 8.15×10-2

Grouting curtain 5.00×10-6

Construction spoil 1.00×10-1

Table 2. Computation parameters of the direct method and the substructure 
method.

Methods
degrees of 
freedom

prescribed 
relative error

computing 
time

CPU 
Utilization 
Rate (%)

Number of 
iteration 

steps

direct 
method

74592 10-5

3196.52 50 16

substructure 
method

4200.35 65 18

Figure 16. Plan view of the distribution of the free surface in the monolithic seepage field.

Figure 17. The distribution of the waterhead contours at the typical cross-section of dam.
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the upper and lower surfaces are about 635.0~640.0 m and 
597.0~620.0 m, respectively. iii) the distribution of the drifting 
pebble layer is mainly on the surface of the current riverbed and 
the floodplains, overlapping the sand-lens layer with a drifting 
pebble layer with a thickness of 10.0~25.0 m.

The project area is mainly composed of pre-Sinian epimeta-
morphic basalt, tuff and rhyolite porphyry of the Suxiong For-
mation of the Lower Sinian, with the Chengjiang granite and a 
Quaternary loose accumulation layer. i) The bed rock of Pre-
Sinian hypometamorphic basalts is mainly exposed in the right 
bank valley slope and buried in the bottom of the river bed. ii) 
The lower Sinian Suxiong Formation rocks exhibit well devel-
oped columnar joints with columnar diameters ranging from 
0.3 m to 0.8 m and the distribution area is large, mainly exposed 
on both sides downstream of the junction area. iii) the Chengji-
ang period granite intrusions are widely exposed in the left bank 
upstream and downstream of the junction area. The right bank 
represents only a small amount of the distribution in the Niri 
estuary. The rock mass is hard, complete and of good quality 
which is the main engineering utilization rock mass within the 
scope of the project.

3.2.2. Dam structure and power station
As shown in Fig. 13, the underground powerhouse is located on 
the left bank of the dam. At the upstream side of the underground 
powerhouse, three drainage galleries and four arrays of drainage 
holes, the latter with a diameter of 76.0mm each are equally 
spaced at 4.0m, are provided, as shown in Fig. 5. Figure 14. shows 
the cross section of the rock-filled dam with a maximum height 
of 186m. It is built on a deep overburden layer with a maximum 
thickness of 75m. The anti-seepage system of the dam and the 
foundation includes the earth core, two concrete cut-off walls and 
the grouting curtains. The normal water level of the reservoir and 
the tailwater level are 850.0m and 670.0m, respectively. 

3.2.3. Numerical simulation
Figure 15. shows the three-dimensional FE mesh for this hydro-
power station, consisting of 74592 nodes and 67748 linear 3D fi-

nite elements. It consists of the dam body, the underground power
house, (approximated by a cuboid), the surrounding rock mass 
and 147 leakage drainage holes and 49 overflow drainage holes. 
Because of the large number of drainage holes, the method for 
considering densely spaced drainage holes in section 4 serves as 
an essential means for the efficient modeling of drainage holes at 
a similar accuracy by means of the substructure technique, how-
ever, at reduced computing time. Because of the underground 
powerhouse, a larger domain of the rock mass is discretized on 
the left bank of the dam. The permeability coefficients of the dif-
ferent materials are summarized in Table 1. Setting er = 10 in the 
convergence criterion of Eq. (14), requires 16 iteration steps to 
compute the free seepage surface. The computing time on a PC 
AMD Athlon (TM) 64 X2 Dual Core Processor 4000+, 2.11GHZ, 
memory 2.00G RAM, is about 3200 seconds. Compared with the 
direct method employed, considering drainage holes as internal 
boundaries, means that the substructure method is somewhat 
slower (Table 2).

Figure 16. shows the plan view of the distribution of the free 
surface in the monolithic seepage field. It nearly matches the to-
pography and is characterized by steep gradients in the vicinity 
of the dam body and the underground power house, reflecting the 
complex boundary conditions and the effects of the seepage-con-
trol and drainage measures. The waterhead isolines, displayed in 
Figure 16. show a significant drop of the water head in the vicin-
ity of the underground powerhouse. The water level of 650m at 
the upstream side of the powerhouse is almost equal to the bot-
tom elevation of the lowest drainage gallery. Thus, the drainage 
galleries and densely-spaced drainage holes at the upstream face 
of the powerhouse significantly reduce the water pressure acting 
on the powerhouse.

The waterhead isolines for the vertical typical sections of 
dam and powerhouse are displayed in Figs. 17 and 18, respec-
tively. Fig. 17 shows that: (i) the upstream water level in the rock 
mass is higher than the water level of the reservoir, (ii) the down-
stream water level in the rock mass is higher than the tailwater 
level, (iii) the free seepage surface drops from 850m to 675m in-
side the earth core, accounting for 97% of the water level differ-

Figure 18. The distribution of the waterhead contours at the typical cross-section of the powerhouse.
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ence between the upstream and the downstream side of the dam, 
(iv) a large reduction of the waterhead is caused by the concrete 
walls and the grouting curtains, effectively cutting off the seep-
age passing through the overburden foundation, whereas smooth 
changes of the waterhead occur in the deep overburden.

The waterhead isolines, displayed in Fig. 18, show a signifi-
cant drop of the free surface in the vicinity of the underground 
powerhouse. The water level of 650m at the upstream side of the 
powerhouse is almost equal to the bottom elevation of the lowest 
drainage gallery. Thus, the drainage galleries and densely-spaced 
drainage holes at the upstream face of the powerhouse signifi-
cantly reduce the water pressure acting on the powerhouse. 

4. CONCLUSIONS
Monolithic seepage problems with complex drainage systems are 
commonly faced in hydraulic engineering, slope engineering and 
underground engineering. Typically, they are non-linear prob-
lems. In this study, a new FE method was presented for mono-
lithic seepage problems, which is characterized by analyzing the 
overall unconfined seepage flow by the proposed improved vir-
tual flux method (IVFM) simultaneously with the local seepage 
field in the vicinity of the complex drainage system. The latter 
usually consists of leakage drainage holes and overflow drainage 
holes, which are modeled as internal boundaries.

Compared to the previously proposed virtual flux method, 
in the IVFM the accuracy of the computed conductivity matri-
ces in transition elements, i.e., the finite elements which contain 
the free surface, is improved by increasing the number of Gauss 
points for the numerical integration and by introducing a regu-
larized Heaviside function for distinguishing between the do-
main below and above the free surface of a particular transition 
element in the integration procedure. These improvements al-
low the use of coarser FE-meshes and in addition, adaptive 
remeshing can be avoided. These features are especially impor-
tant for the analysis of large-scale 3D seepage problems in en-
gineering practice.

The proposed method was verified by comparing numerical 
and analytical results for an academic seepage problem, for which 
the analytical solution is available. Subsequently, the effective-
ness and robustness of the proposed method was demonstrated 
by the large-scale 3D numerical simulation of the monolithic 
seepage field in the vicinity of a hydropower station with a com-
plex drainage system, currently under construction in China.
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