Carbonate Platform Megafacies of the Jurassic and Cretaceous Deposits of the Karst Dinarides

Main Article Content

Josip Tišljar
Igor Vlahović
Ivo Velić
Branko Sokač

Abstract

Platform carbonate deposits of the Karst Dinarides area have a stratigraphic range from the Middle Triassic (or even Carboniferous in some places) to the Middle Eocene, forming a belt nearly 700 km long and, (after reduction by younger tectonics) 80–210 km wide. Besides their significant thickness (4500 to 8000 m) they are
characterised by frequent lateral and vertical alternations of different facies, mostly associated with shallow marine environments. Environments ranging from peritidal through low-energy shallow subtidal–lagoons, restricted inner platform shallows, high-energy tidal bars, beach and shoreface to reefal–perireefal  predominate, but there are also carbonate slope deposits and those representing temporarily drowned platform facies and intraplatform troughs. The Jurassic to Cretaceous part of this carbonate succession has
been subdivided into 19 megafacies units (9 for the Jurassic and 10 for the Cretaceous), the majority of which represent an inner part of the ancient Adriatic Carbonate Platform. Marginal parts of the platform are mostly buried, either by the recent Adriatic Sea along the SW margin, or younger deposits along the NE margin; at some localities such Jurassic and Cretaceous deposits are represented by debrites and/or carbonate turbidites. An additional short review of the overlying Uppermost Cretaceous and Palaeogene deposits (4 megafacies units) enabled a better insight into the post-platform evolution. The very complex vertical and lateral alternation of different megafacies units, including emerged areas which were observed throughout the studied sequence in different parts of the Karst Dinarides, indicate the significant palaeogeographic dynamics of the region. This variability resulted from interaction of the global eustatic signal and local factors, including extensive organic production on the carbonate platform and synsedimentary tectonics controlled by the specific palaeogeographic position of the platform during its geological history.

Downloads

Download data is not yet available.

Article Details

Section
Original Scientific Papers