Fluid inclusion study of the Boccassuolo VMS-related stockwork deposit (Northern-Apennine ophiolites, Italy)

Main Article Content

Gabriella B. Kiss
Giorgio Garuti
Federica Zaccarini

Abstract

Several Cyprus-type volcanogenic massive sulphide (VMS) deposits are found in the Jurassic ophiolitic series of the Northern Apennines. Stratabound, stratiform and stockwork deposits were formed in the western limb of the Neotethys (Ligurian Ocean) and are found today in basalt, gabbro and serpentinised peridotite host rocks. The studied stockwork deposit at Boccassuolo is found in basalt and basalt breccia. Detailed petrography, fluid inclusion study, Raman spectroscopy analyses and chlorite thermometry calculations were used to determine the P, T, X conditions of the fluid circulation system. The veins contain three quartz generations, calcite, chlorite, epidote and sericite as gangue minerals and pyrite, chalcopyrite, sphalerite, pyrrhotite and galena as ore minerals. Based on the fluid inclusion study, the earlier defined three vein types (1., 2. and 3.) precipitated from the same type of evolving fluid, though at slightly different stratigraphical positions. The determined ranges of temperature (370 60°C), salinity (6.2 11.4 NaCl equiv. wt%), pressure (30-44 MPa) ranges and methane content (average 0.28 mol/kg) suggest an evolved seawater origin for the hydrothermal fluid, modified by fluid-rock interaction and possibly by mixing of magmatic volatile. The fluid characteristics and the mineralogical observations have proven a slightly distal position in relation to the centre of the fluid flow for all studied locations, but less and more distal blocks were also recognised. The temporal evolution of the system developed into a low temperature event, occurring after the main mineral stage, but still participating to the same process as a whole.

Downloads

Download data is not yet available.

Article Details

Section
Original Scientific Papers

References

ABBATE, E., BROTOLOTTI, V., PRINCIPI, G. (1980): Apennine ophiolites: a peculiar oceanic crust. In: Rocci, G. (ed.), Tethyan ophiolites. Ofioliti Spec. Issue, 1, 59-96.

BARRETT, T.J. (1982): Review of stratigraphic aspects of the ophiolite rocks and pelagic sediments of the Vara complex, North Apennines, Italy. Ofioliti, 7/1, 3-46.

BARRETT, J.J. & Friedrichsen, H., (1989): Stable isotopic composition of atypical ophiolitic rocks from east Ligura, Italy. Chem. Geol., 80, 71-84.

BARRETT, J.J. & SPOONER, E.F.C. (1977): Ophiolitic breccias associated with allochtonous oceanic crustal rocks in the Eastern Ligurian Apennines, Italy – A comparison with observations from rifted oceanic ridges. Earth Planet. Sci. Letters, 35, 79-91.

BARRIE, C. T. & HANNINGTON, M. D. (1999):Introduction: Classification of VMS deposits based on host rock composition, In Barrie, C. T. & Hannington, M. D. (eds.): Volcanic-Associated Massive Sulfide Deposits: Processes and Examples in Modern and Ancient Settings. Rev. Econ. Geol., 8, 2-10.

BARTON, P.B. & BETHKE, P.M. (1987): Chalcopyrite disease in sphalerite: Pathology and epidemiology. Am. Mineral., 72, 451-467.

BODNAR, R.J. (2003): Reequilibration of fluid inclusions. In: Samson, I., Anderson, A., Marshall, D. eds. Fluid Inclusions: Analysis and Interpretation. Mineral. Assoc. Canada, Short Course, 32, 213-230
.
BONATTI, E., ZERBI, M., KAY, R., RYDELL, H. (1976): Metalliferous deposits from the Apennine ophiolites: Mesozoic equivalents of modern deposits from oceanic spreading centres. Bull. Geol. Soc. Am., 87, 83-94.

CABELLA, R., LUCCHETTI, G., MARESCOTTI, P. (1998): Mn-ores from Eastern Ligurian ophiolitic sequences (« Diaspri di monte Alpe » formation, northern Apennines, Italy). Trends Mineral., 2, 1-49.

CATHELINEAU, M. & IZQUIERDO, G. (1988): Temperature — composition relationships of authigenic micaceous minerals in the Los Azufres geothermal system. Contrib. Mineral. Petrol., 100/4, 418-428.

CORTESOGNO, L., GIANNELLI, G., PICCARDO, G.B. (1975): Petrogenesis and metamorphic evolution of the ophiolitic mafic rocks (Norhtern Apennine and Tuscany). Boll. Soc. Geol. Ital., 94, 291-327.

CORTESOGNO, L., GALIBATI, B., PRINCIPI, G., VENTURELLI, G. (1978): Le brecce ofiolitiche della Liguria orientale: nuovi dati e discussion sui modelli paleogeografici. Ofioliti, 3., 99-160.

CORTESOGNO, L., GALBIATI, B., PRINCIPI, G. (1987): Note alla “Carta geologica delle ofioliti del Bracco” e riconstruzione della paleogeografia Giurassico, Cretacica. Ofioliti, 12, 261-342.

Dal PIAZ, G.V. (1974a): Le métamorphisme alpin de haute pression et basse temperature dans l’évolution structurale de bassin ophiolitique alpino-apeninique, 1e partie. Boll. Soc. Geol. Ital., 93, 437-468.

Dal PIAZ, G.V. (1974b): Le métamorphisme alpin de haute pression et basse temperature dans l’évolution structurale de bassin ophiolitique alpino-apeninique, 2e partie. Schweitzer Mineral. Petrol. Mitt., 57, 59-88.

DAOUDI, L., POT de VIN, J.-L. (2002) : Thermal and hydrothermal effects of Triassic–Liassic basalt flow deposition on clays (Agana Basin, Morocco). C. R. Geosci., 334/7, 463-468

De CARITAT, P., HUTCHEON, I., WALSHE, J.L. (1993): Chlorite geothermometry: a review. Clays Clay Miner., 41, 219-239.

DIAMOND, L.W. (2003): Systematics of H2O inclusions. In: Samson, I., Anderson, A., Marshall, D. (eds.): Fluid Inclusions: Analysis and Interpretation. Mineral. Assoc. Can., Short Course Ser., 32, 55-79.

DILEK, Y. & FURNES, H. (2011): Ophiolite genesis and global tectonics: geochemical and tectonic fingerprinting of ancient oceanic lithosphere. Bull. Geol. Soc. Am., 123, 387-411.

DILEK, Y. & FURNES, H. (2014): Ophiolites and their origins. Elements, 10/2, 93-100.

DOWNS, R.T. (2006): The RRUFF Project: an integrated study of the chemistry, crystallography, Raman and infrared spectroscopy of minerals. Program and Abstracts of the 19th General Meeting of the International Mineralogical Association in Kobe, Japan, O03-13.

DUAN, Z. & MAO, S. (2006): A thermodynamic model for calculating methane solubility, density and gas phase composition of methane-bearing aqueous fluids from 273 to 523 K and from 1 to 2000 bar. Geochim. Cosmochim. Acta, 70, 3369–3386.

ELTER, P. (1975): L’ensemble ligure. Bull. Soc. Geol. France, 17, 984-997.

ESSENE, E.J., PEACOR, D.R. (1995): Clay Mineral Thermometry-A Critical Perspective. Clays Clay Miner., 43, 540-553.

ETIOPE, G. & SCHOEL, M. (2014): Abiotic gas: atypical, but not rare. Elements, 10/4, 291-296.

FERRARIO, A. & GARUTI, G. (1980): Copper deposits in the basal breccias and volcanosedimentary sequences of the Eastern Ligurian ophiolites (Italy). Mineral. Dep., 15, 291-303.

FOUSTOUKOS, D.I. & SEYFRIED, W.E. (2007): Fluid phase separation processes in submarine hydrothermal systems. Rev. Mineral. Geochem., 65., 213-239.

FRANKLIN, J. M., SANGSTER, D.,M., LYDON, J.,W. (1981): Volcanic Associated Massive Sulphide Deposits. Econ. Geol. 75th Anniversary Vol., 485-627.

GARUTI, G. & ZACCARINI, F. (2005): Minerals of Au, Ag and U in volcanic-rock-associated massive sulphide deposits of the Northern Apennine ophiolite, Italy. Can. Mineral., 43, 935-950.

GARUTI, G., BARTOLI, O., SCACCHETTI, M., ZACCARINI, F. (2008): Geological setting and structural styles of Volcanic Massive Sulphide deposits in the Northern Apennines (Italy) : evidence for seafloor and sub-seafloor hydrothermal activity in unconventional ophiolites of the Mesozoic Tethys. Bol. Soc. Geol. Mex., 60/1, 121-145.

GARUTI, G. ALFONSO, P., ZACCARINI, F., PROENZA, J.A. (2009): Sulfur-isotope variations in sulphide minerals from massive sulphide deposits of the Northern Apennine ophiolites: inorganic and biogenic constraints. Ofioliti, 34, 43-62.

GARUTI, G., ZACCARINI, F., SCACCHETTI, M., BARTOLI, O. (2011): The Pb-rich sulphide veins in the Boccassuolo ophiolite : Implications for the evolution of hydrothermal activity accross the ocean-continent transition in the Ligurian Tethys (Northern-Apennine, Italy). Lithos, 124, 243-254.

GOLDSTEIN, R. H., REYNOLDS, T. J. (1994): Systematics of fluid inclusions in diagenetic minerals. Soc. Sedim. Geol. Short Course, 31, 199 pp.

GUILLAUME, D., TEINTURIER, S., DUBESSY, J., PIRONON J. (2003): Calibration of methane analysis by Raman spectroscopy in H2O–NaCl–CH4 fluid inclusions. Chem. Geol., 194, 41-49.

HERZIG, P.M. & HANNINGTON, M.D. (1995): Polymetallic massive sulphides at the modern seafloor: A review. Ore Geol. Rev., 10, 95–115.

IOANNOU, S.E., SPOONER, E.T.C., BARRIE, C.T. (2007): Fluid Temperature and Salinity Characteristics of the Matagami Volcanogenic Massive Sulphide District, Quebec. Econ. Geol., 102, 691-715.

JIANG, W.T., PEACOR, D.R., BUSECK, P.R. (1994): Chlorite Geothermometry?--Contamination and Apparent Octahedral Vacancies. Clays Clay Miner., 42, 593-605.

JUTEAU, T., MANAC'H, G., MOREAU, O., LÉCUYER, C., RAMBOZ, C. (2000) : The high temperature reaction zone of the Oman ophiolite: new field data, microthermometry of fluid inclusions, PIXE analyses and oxygen isotopic ratios. Mar. Geophys. Res., 21/3, 351-385.

KISS, G., MOLNÁR, F., ZACCARINI, F. (2012): Fluid inclusion studies in datolite of low grade metamorphic origin from a Jurassic pillow basalt series in northeastern Hungary. Central Eur J Geosci, 4/2, 261-274.

KRANIDIOTIS, P. & MACLEAN, W.H. (1987), Systematics of chlorite alteration at the Phelps Dodge massive sulphide deposit, Matagami, Quebec. Econ. Geol., 82., 1898-1911.

LAGABRIELLE, Y. & LEMOINE, M. (1997): Alpine, Corsican and Apennine ophiolites: the slow-spreading ridge model. C. R. Acad. Sci. Paris, 325, 909-920.

LEMOINE, M., TRICART, P., BOILLOT, G. (1987): Ultramafic and gabbroic ocean floor of the Ligurian Tethys (Alps, Corsica, Apennines) : in search of a genetic model. Geology, 15, 622-625.

LEONI, L., SARTORI, F., TAMPONI, M. (1998), Compositional variation in K-micas and chlorites coexistiong in Al-saturated metapelites under late-diagenetic to low-grade metamorphic conditions (Internal Liguride Units, Northern-Apennines, Italy). Eur. J. Mineral., 10, 1321-1339.

LOMBARDO, B., RUBATTO, D., CASTELLI, D. (2002): Ion microprobe U-Pb dating of zircon from a Monviso metaplagiogranite: implication for the evolution of the Piedmont-Liguria Tethys in the Western Alps. Ofioliti, 27/2, 119-131.

LYDON, J. W. (1984): Some observations on the morphology and ore textures of volcanogenic sulfide deposits of Cyprus. Geol. Surv. Canada, Curr. Res., Paper 84-01A, 601-610.

NEHLIG, P. (1991): Salinity of oceanic hydrothermal fluids: a fluid inclusion study. Earth Planet. Sci. Letters, 102, 310-325.

OHMOTO, H. (1996): Formation of volcanogenic massive sulphide deposits: the Kuroko perspective. Ore Geol. Rev., 10, 135-177.

PICCARDO, G.B., RAMPONE, E., ROMAIRONE, A. (2002): Formation and composition of the oceanic lithosphere of the Ligurian Tethys: inferences from the Ligurian ophiolites. Ofioliti, 27/2, 145-161.

PINI, G.A. (1999): Tectonosomes and olistostromes in the Argille Scagliose of the Northern Apennines, Italy. Geol. Soc. Am. Spec. Pap., 335, 1-70.

PIRAJNO, F. (2009): Hydrothermal processes and mineral systems: Springer, Geological Survey of Western Australia, 1250 p.

PLESI, G., DANIELE, G., CHICCI, S., BETTELLI, G., CATANZARITI, R., FERONI, C., De NARDO, M.T., MARTINELLI, P., OTTRIA, G., PANINI, F. (2002): Note illustrative della Carta Geologica d’Italia alla scala 1 : 50.000, foglio 235 Pievepelago : Presidenza del Consiglio dei Ministri, Servizio Geologico d’Italia, Regione Emilia Romagna, 1-138.

POGNANTE, U. & PICCARDO, G.B., (1984): Petrogenesi delle ofioliti delle Alpi Occidentali. Mem. Soc. Geol. Ital., 29, 79-92.

PRINCIPI, G., CORTESOGNO, L., CELLAI, D., GAGGERO, L., GARUTI, G., GAZZOTTI, M., PASSERINI, P., TREVES, B. (1992): Le ofioliti dell’Apennino settentrionale : Societá Geologica Italiana, 76a Riunione Estiva, Firenze 24-25-26 settembre 1992, Guide alle Escursioni post-congresso, 1-76.

RONA, P.A. (1984): Hydrothermal mineralization at seafloor spreading centres. Earth Sci. Rev., 20, 1–104.

SCOTT, S.D. (1997): Submarine hydrothermal systems and deposits: In Barnes, H.L. (ed.), Geochemistry of hydrothermal ore deposits, 3rd ed.: New York, John Wiley and Sons, 797–875.

SHERLOCK, R.L., ROTH, T., SPOONER, E.T.C., BRAY, C.J. (1999): Origin of the Eskay Creek Precious Metal-Rich Volcanogenie Massive Sulphide Deposit: Fluid Inclusion and Stable Isotope Evidence. Econ. Geol., 94, 803-824.

STEELE-MACINNIS, M., HAN, L., LOWELL, R.P., RIMSTIDT, J.D., BODNAR R.J. (2012): Quartz precipitation and fluid inclusion characteristics in sub-seafloor hydrothermal systems associated with volcanogenic massive sulphide deposits. Centr. Eur. J. Geosci., 4/2, 275-286.

SUN, Q., ZHAO, L., LI, N., LIU, J. (2010): Raman spectroscopic study for the determination of Cl− concentration (molarity scale) in aqueous solutions: Application to fluid inclusions. Chem. Geol., 272, 55-61.

TORNOS, F. (2006): Environment of formation and styles of volcanogenic massive sulphides: the Iberian Pyrite Belt. Ore Geol. Rev., 28, 259–307.

URABE, T., SCOTT, S.D., HATTORI, K. (1983): A comparison of footwall-rock interactions and geothermal systems beneath some Japanese and Canadian volcanogenic massive sulphide deposits. Econ. Geol. Monograph, 5, 345–364.

WILKINSON, J.J. (2001): Fluid inclusions in hydrothermal ore deposits. Lithos, 55, 229-272.

ZACCARINI, F. & GARUTI, G. (2008): Mineralogy and chemical composition of VMS deposits of northern Apennine ophiolites, Italy: evidence for the influence of country rock type on ore composition. Mineral. Petrol., 94, 61-83.

ZACCARINI, F., MORALES-RUANO, S., SCACCHETTI, M., GARUTI, G. (2008): Investigation of datolite (CaBSiO4OH) from basalts in the northern Apennines ophiolites (Italy): genetic implications. Chemie Erde – Geochem., 86, 265-277 .

ZENGQIAN, H., ZAW, K., RONA, P., LINQUING, L., XIAOMING, Q., SHUHE, S., LIGUI, P., JIANJUN, H. (2008): Geology, Fluid Inclusions, and Oxygen Isotope Geochemistry of the Baiyinchang Pipe-Style Volcanic-Hosted Massive Sulphide Cu Deposit in Gansu Province, Northwestern China. Econ. Geol., 103, 269-292.