Testing a sequential stochastic simulation method based on regression kriging in a catchment area in Southern Hungary
Main Article Content
Abstract
Downloads
Article Details
Authors have copyright and publishing rights on all published manuscripts.
References
DEUTSCH, C.V & JOURNEL, A.G. (1998): GSLIB: Geostatistical Software Library and User’s Guide. – Oxford University Press, New York, 369 p.
DÖVÉNYI, Z. (ed.) (2010): Magyarország kistájainak katasztere [The cadastre of the Hungarian small regions – in Hungarian]. – MTA FKI, Budapest, 876 p.
GEIGER, J. (2006): Szekvenciális gaussi szimuláció az övzátonytestek kisléptékű heterogenitásának modellezésében [Sequential Gaussian simulation in the modelling of small-scale heterogeneity of point-bars – in Hungarian, with an English Abstract]. – Földtani közlöny, 136/4, 527–546.
GEIGER, J. (2007): Geomatematika [Geomathematics – in Hungarian]. – JATEPress, Szeged, 117 p.
GEIGER, J. (2012): Some thoughts on the pre- and post-processing in sequential Gaussian simulation and their effects on reservoir characterization. – In: GEIGER, J., PÁL-MOLNÁR E. & MALVIĆ, T. (eds.): New horizons in central european geomathematics, geostatistics and geoinformatics. – GeoLitera, Szeged, 17–34.
GEIGER, J. & MUCSI, L. (2005): A szekvenciális sztochasztikus szimuláció előnyei a talajvízszint kisléptékű heterogenitásának térképezésében [The advantages of stochastic simulation in mapping the small-scale heterogeneity of water tables – in Hungarian, with an English Abstract]. – Hidrológiai közlöny, 85/2, 37–47.
GOOVAERTS, P. (1997): Geostatistics for Natural Resources Evaluation. – Oxford University Press, New York, 512 p.
GOOVAERTS, P. (2000): Estimation or simulation of soil properties? An optimization problem with conflicting criteria. – Geoderma, 97, 165–186.
GOOVAERTS, P. (2001): Geostatistical modelling of uncertainty in soil science. – Geoderma, 103, 3–26.
GOOVAERTS, P. (2010): Combining Areal and Point Data in Geostatistical Interpolation: Applications to Soil Science and Medical Geography. – Math. Geosci., 42, 535–554.
GOOVAERTS, P. (2011): A coherent geostatistical approach for combining choropleth map and field data in the spatial interpolation of soil properties. – Eur. J. Soil Sci., 62, 371–380.
HENGL, T., HEUVELINK, G.B.M. & STEIN, A. (2004): A generic framework for spatial prediction of soil variables based on regression-kriging. – Geoderma, 120, 75–93.
JENNY, H. (1941): Factors of Soil Formation: A System of Quantitative Pedology. – McGraw-Hill, New York, 281 p.
KERRY, R., GOOVAERTS, P., RAWLINS, B.G. & MARCHANT, B.P. (2012): Disaggregation of legacy soil data using area to point kriging for mapping soil organic carbon at the regional scale. – Geoderma, 170, 347–358.
MALVIĆ, T. (2008): Kriging, cokriging or stochastical simulations, and the choice between deterministic or sequential approaches. – Geol. Croat., 61/1, 37-47.
MALVIĆ, T., NOVAK ZELENIKA, K. & CVETKOVIĆ, M. (2012): Indicator vs. gaussian geostatistical methods in sandstone reservoirs – case study from the Sava Depression, Croatia. – In: GEIGER, J., PÁL-MOLNÁR E. & MALVIĆ, T. (eds.): New horizons in central european geomathematics, geostatistics and geoinformatics. – GeoLitera, Szeged, 37–45.
MUCSI, L., GEIGER, J. & MALVIĆ, T. (2013): The advantages of using sequential stochastic simulations when mapping small-scale heterogeneities of the groundwater level. – J. En. Geo., 6/3-4, 39–47. DOI: 10.2478/jengeo-2013-0005
MSZ 21470–52:1983 (1983): Környezetvédelmi talajvizsgálatok: Talajok szervesanyag-tartalmának meghatározása [Environmental protection. Testing of soils. Determination of organic matter – in Hungarian]. – Hungarian Standard Association, Budapest, 4 p.
NOVAK ZELENIKA, K. & MALVIĆ, T. (2011): Stochastic simulations of dependent geological variables in sandstone reservoirs of Neogene age: A case study of the Kloštar Field, Sava Depression. – Geol. Croat., 64/2, 173–183.
NOVAK ZELENIKA, K., VELIĆ, J. & MALVIĆ, T. (2012): Application of geostatistics in the description of turbiditic depositional environments, a case study of the Kloštar Field, Sava Depression, Croatia. – In: GEIGER, J., PÁL-MOLNÁR E. & MALVIĆ, T. (eds.): New horizons in central european geomathematics, geostatistics and geoinformatics. – GeoLitera, Szeged, 61–71.
PÁSZTOR, L., KÖRÖSPARTI, J., BOZÁN, CS., LABORCZI, A. & TAKÁCS, K. (2014a): Spatial risk assessment of hydrological extremities: Inland excess water hazard, Szabolcs-Szatmár-Bereg County, Hungary. – Journal of Maps, DOI: 10.1080/17445647.2014.954647
PÁSZTOR, L., SZABÓ, J., BAKACSI, ZS., LABORCZI, A., DOBOS, E., ILLÉS, G. & SZATMÁRI, G. (2014b): Elaboration of novel, countrywide maps for the satisfaction of recent demands on spatial, soil related information in Hungary. – In: ARROUAYS, D., MCKENZIE, N., HEMPEL, J., RICHER DE FORGES, A. & MCBRATNEY, A.B. (eds.): Global Soil Map: Basis of the global spatial soil information system. – Taylor & Francis, London, 207–212.
SIMBAHAN, G.C., DOBERMANN, A., GOOVAERTS, P., PING, J. & HADDIX, M.L. (2006): Fine-resolution mapping of soil organic carbon based on multivariate secondary data. – Geoderma, 132, 471–489.
SZATMÁRI, G. & BARTA, K. (2013): Csernozjom talajok szervesanyag-tartalmának digitalis térképezése erózióval veszélyeztetett mezőföldi területen [Digital mapping of the organic matter content of chernozem soils on an area endangered by erosion in the Mezőföld region – in Hungarian, with an English Abstract]. – Agrokem. Talajtan, 62/1, 47-60.
SZATMÁRI, G., LABORCZI, A., ILLÉS G. & PÁSZTOR, L. (2013): A talajok szervesanyag-készletének nagyléptékű térképezése regresszió krigeléssel Zala megye példáján [Large-scale mapping of soil organic matter content by regression kriging in Zala County – in Hungarian, with English Abstract]. – Agrokem. Talajtan, 62/2, 219-234.
WEBSTER, R. & OLIVER, M.A. (2007): Geostatistics for Environmental Scientists (2nd Ed.). – Wiley, Chichester, 330 p.
WISCHMEIER, W.H. & SMITH, D.D. (1978): Predicting rainfall erosion losses: A guide to conservation planning. – U.S. Government Printing Office, Washington D.C., 58 p.