Influence of groundwater quality indicators on nitrate concentrations in the Zagreb aquifer system

Main Article Content

Zoran Kovač
Zoran Nakić
Krešimir Pavlić

Abstract

Nitrates presents one of the main groups of contaminants in the Zagreb aquifer system. Some natural groundwater quality indicators can have significant influence on their stability and mobility in the saturated zone. Correlation and multivariate statistical analyses were used to test the correlation of average values of NO3- with O2, ORP, pH, EC and temperature of groundwater, and to allocate observation wells that belong to the same clusters. ORP values didn`t relate to any observed variables, which is probably due to their variability which suggests changes in the oxidation-reduction conditions in the aquifer system. Principal component analysis was used for the determination of variables that are related to the nitrate concentrations and which were then used in cluster analysis. Other variables were excluded from cluster analysis. Three methods were used to perform cluster analysis, where the results calculated with Ward`s method were chosen as the most appropriate. In the end, two clusters were identified, one with smaller, and one with higher NO3-, O2 and EC values. Observation wells from cluster 1 are generally located near the Sava River and have similar nitrate concentrations. Lack of other nitrogen species and moderately aerobic conditions suggest very fast nitrification in the shallow Holocene aquifer.

Downloads

Download data is not yet available.

Article Details

Section
Original Scientific Papers

References

ALLER, L., BENNETT, T. & LEHR, J.H. (1987): DRASTIC: a standardized system for evaluating groundwater pollution potential using hydrogeologic settings. US EPA/600/2–87/035.

ALMASRI, M.N. (2003): Optimal management of nitrate contamination of ground water. PhD Dissertation. Utah State University, Logan, Utah, 229 p.

ALMASRI, M.N. (2007): Nitrate contamination of groundwater: A conceptual management framework.– Environmental Impact Assessment Review, 27, 220–242. doi:10.1016/j.eiar.2006.11.002

BAČANI, A., POSAVEC, K. & PARLOV, J. (2010): Groundwater quantity in the Zagreb aquifer.– In: ZUBER, A., KANIA, J. & KMIECIK, E. (eds.): XXXVIII IAH Congress Groundwater Quality Sustainability, Krakow, September 12–17, 2010, 87–92.

BRKIĆ, Ž. (1999): Napajanje aluvijalnih vodonosnika sjeverne Hrvatske kroz slabije propusne krovinske naslage [Alluvial aquifer recharge through semipermeable covering deposits in northern Croatia – in Croatian].– Unpubl. PhD Thesis, Faculty of Mining, Geology and Petroleum Engineering, University of Zagreb, Zagreb, 157 p.

BRYANT, F.B. & YARNOLD, P.R. (1995): Principal components analysis and exploratory and confirmatory factor analysis.– In: GRIMM, L.G. & YARNOLD, R.R. (eds.): Reading and understanding multivariate statistics, 99–136. Washington, DC: American Psychological Association.

CHOWDARY, V.M., RAO, N.H. & SARMA, P.B.S. (2005): Decision support framework for assessment of non-point-source pollution of groundwater in large irrigation projects.– Agricultural Water Management, 75, 194–225, doi: 10.1016/j.agwat.2004.12.013

DIMKIĆ, M.A., BRAUCH, H.J. & KAVANAUGH, M. (2008): Groundwater management in large river basins.– IWA Publishing, Alliance House, Biddles Ltd, Norfolk, UK.

HAIR, JR., J.F., BLACK, W.C., BABIN, B.J. & ANDERSON, R.E. (2010): Multivariate data analysis.– Seventh edition, Prentice Hall, Upper Saddle River, NJ 07458, 785 p.

HERNITZ, Z., KOVAČEVIĆ, S., VELIĆ, J. & URLI, M. (1981): Primjer kompleksnih geološko-geofizičkih istraživanja kvartarnih naslaga u okolici Prevlake [An example of complex geological and geophysical explorations of Wuaternary deposits in the soroundings of Prevlaka – in Croatian].– Geološki vjesnik, 33, 11–34, Zagreb.

HOSONO, T., TOKUNAGA, T., KAGABU, M., NAKATA, H., ORISHIKIDA, T., LIN, I. & SHIMADA, J. (2013): The use of δ15N and δ18O tracers with an understanding of groundwater flow dynamics for evaluating the origins and attenuation mechanisms of nitrate pollution.– Water Research, 47, 2661–2675. doi:10.1016/j.watres.2013.02.020

HUSSON O. (2013): Redox potential (Eh) and pH as drivers of soil/plant/microorganism systems: a transdisciplinary overview pointing to integrative opportunities for agronomy.– Plant Soil, 362, 389–417. doi:10.1007/s11104-012-1429-7

JEONG, C.H. (2001): Effect of land use and urbanization on hydrochemistry and contamination of groundwater from Taejon area, Korea.– Journal of Hydrology 253(1–4), 194–210. doi: 10.1016/S0022-1694(01)00481-4

KOVAČ, Z., NAKIĆ, Z., POSAVEC, K., PARLOV, J. & BAČANI, A. (2013): Ambient background concentrations of chemical parameters in groundwater of Samobor aquifer. Waters in sensitive and protected areas, 163–166.

KOVAČ, Z., PAVLIĆ, K. & NAKIĆ, Z. (2016): Influence of dissolved oxygen on nitrates concentration in Zagreb aquifer. 8th Croatian-Hungarian and 19th Hungarian geomathematical congress, Geomathematics – present and future of geological modelling,
89–96.

LAKE, I.R., LOVETT, A.A., HISCOCK, K.M., BETSON, M., FOLEY, A., SUNNENBERG, G., EVERS, S. & FLETCHER, S. (2003): Evaluating factors influencing groundwater vulnerability to nitrate pollution: developing the potential of GIS.– Journal of Environmental Management, 68, 315–328. doi: 10.1016/S0301-4797(03)00095-1

LARVA, O., MARKOVIĆ, T. & BRKIĆ, Ž. (2010): Groundwater hydrochemistry of the quaternary alluvial aquifer in Varaždin region — Croatia. XXXVIII IAH Congress (ISSN: 0208-6336).– Groundwater Quality Sustainability, Krakow, 493–500.

LI, S.L, LIU, C.Q., LANG, Y.C., ZHAO, Z.Q. & ZHOU, Z.H. (2010): Tracing the sources of nitrate in karstic groundwater in Zunyi, Southwest China: a combined nitrogen isotope and water chemistry approach.– Environmental Earth Sciences, 60, 1415–1423, doi: 10.1007/s12665-009-0277-0

MACCALLUM, R.C., WIDAMAN, K.F., ZHANG, S. & HONG, S. (1999): Sample size in factor analysis. Psychological Methods, 4, 84-99. doi: 10.1037/1082-989X.4.1.84

MARKOVIĆ, T., BRKIĆ, Ž. & LARVA, O. (2013): Using hydrochemical data and modelling to enhance the knowledge of groundwater flow and quality in an alluvial aquifer of Zagreb, Croatia.– Science of the Total Environment, 458–460, 508–516. doi: 10.1016/j.scitotenv.2013.04.013

MILETIĆ, P. & BAČANI, A. (1999): EGPV: Izrada bilansa [Development of water balance – in Croatian]. Book 4, 4th part. Faculty of Mining, Geology and Petroleum Engineering, University of Zagreb, Zagreb.

MKANDAWIRE, T. (2008): Quality of groundwater from shallow wells of selected villages in Blantyre District, Malawi.– Physics and Chemistry of the Earth 33/(8–13), 807–811. doi:10.1016/j.pce.2008.06.023

MOOI, E. & SARSTEDT, M. (2011): A Concise Guide to Market Research. The Process, Data, and Methods using IBM SPSS Statistics. ISBN: 978-3-642-12541-6, 307 p.

MORATALLA, A., GÓMEZ-ALDAY, J.J. & DE LAS HERAS, J. (2009): Nitrate in the Water-Supply Wells in the Mancha Oriental Hydrogeological System (SE Spain).– Water Resources Management, 23/8, 1621–1640. doi: 10.1007/s11269-008-9344-7

NAKIĆ, Z., BAČANI, A., PARLOV, J., DUIĆ, Ž., PERKOVIĆ, D., KOVAČ, Z., TUMARA, D., MIJATOVIĆ, I., ŠPOLJARIĆ, D., UGRINA, I., STANEK, D. & SLAVINIĆ, P. (2016): Definiranje trendova i ocjena stanja podzemnih voda na području panonskog dijela Hrvatske [Groundwater trend and status assessment in the Pannonian part of Croatia – in Croatian].– Stručna studija, Rudarsko-geološko naftni fakultet, Sveučilište u Zagrebu.

NAKIĆ, Z., POSAVEC, K. & BAČANI, A. (2007): A Visual Basic spreadsheet macro for geochemical background analysis.– Ground Water 45/5, 642–647. doi: 10.1111/j.1745-6584.2007.00325.x

NAKIĆ, Z., POSAVEC, K. & PARLOV, J. (2010): Model-based objective methods for the estimation of groundwater geochemical background. AQUAmundi 1, no. 1.

NAKIĆ, Z., POSAVEC, K., PARLOV, J. & BAČANI, A. (2011): Development of the Conceptual Model of the Zagreb Aquifer System. The Geology in Digital Age: Proceedings of the 17th Meeting of the Association of European Geological Societies, MAEGS 17 / Banjac, Nenad (ed.).– Belgrade: Serbian Geological Society, 2011. 169–174.

NAKIĆ, Z., RUŽIČIĆ, S., POSAVEC, K., MILEUSNIĆ, M., PARLOV, J., BAČANI, A. & DURN, G. (2013): Conceptual model for groundwater status and risk assessment – case study of the Zagreb aquifer system.– Geologia Croatica, 66/1, doi: 10.4154/GC.2013.05

PEÑA-HARO, S., PULIDO-VELAZQUEZ, M. & SAHUQUILLO, A. (2009): A hydroeconomic modelling framework for optimal management of groundwater nitrate pollution from agriculture.– Journal of Hydrology, 373, 193–203, doi: 10.1016/j.jhydrol.2009.04.024

POSAVEC, K. (2006): Identifikacija i prognoza minimalnih razina podzemne vode zagrebačkoga aluvijalnog vodonosnika modelima recesijskih krivulja [Identification and prediction of minimum ground water levels of Zagreb alluvial aquifer using recession curve models – in Croatian].– Unpub. PhD Thesis, Faculty of Mining, Geology and Petroleum Engineering, University of Zagreb, Zagreb, 89. p.

PUIGDOMENECH, I. (2006): HYDRA (Hydrochemical Equilibrium-Constant Database) and MEDUSA (Make Equilibrium Diagrams Using Sophisticated Algorithms) Programs. Royal Institute of Technology, Stockholm. http://www.kemi. kth.se/medusa/

RUŽIČIĆ, S., MILEUSNIĆ, M. & POSAVEC, K. (2012): Building Conceptual and Mathematical Model for Water Flow and Solute Transport in the Unsaturated zone at Kosnica Site.– Rudarsko-geološko-naftni zbornik (0353-4529), 25, 21–31.

SOKAČ, A. (1978): Pleistocene ostracode fauna of the Pannonian Basin in Croatia. Paleont. Jugoslav., 21, 1–51.

SOLLITTO, D., ROMIĆ, M., CASTRIGNANO, A., ROMIĆ, D. & BAKIĆ, H. (2010): Assessing heavy metal contamination in soils of the Zagreb region (Northwest Croatia) using multivariate geostatistics.– Catena 80, 182–194. doi: 10.1016/j.catena.2009.11.005

UDOVIČIĆ, M., BAŽDARIĆ, K., BILIĆ-ZULE, L. & PETROVEČKI, M. (2007): Što treba znati kada izračunavamo koeficijent korelacije? (engl. What we need to know when calculating the coefficient of correlation?).– Biochemia Medica 17/1,1–138.

VELIĆ, J. & DURN, G. (1993): Alternating Lacustrine-Marsh Sedimentation and Subaerial Exposure Phases during Quaternary: Prečko, Zagreb, Croatia.– Geologia Croatica, vol. 46, no. 1, p. 71–90. doi: 10.4154/GC.1993.06

VELIĆ, J. & SAFTIĆ, B. (1991): Subsurface Spreading and Facies Characteristics of Middle Peistocene Deposits Between Zaprešić and Samobor.– Geološki vjesnik, 44, 69–82.

VIDAL, M., MELGAR, J., LOPEZ, A. & SANTOALLA, M.C. (2000): Spatial and temporal hydrochemical changes in groundwater under the contaminating effects of fertilizers and wastewater.– Journal of Environmental Management 60/3,215–225. doi: 10.1006/jema.2000.0379

VLAHOVIĆ, T., BAČANI, A. & POSAVEC, K. (2009): Hydrogeochemical stratification of the unconfined Samobor aquifer (Zagreb, Croatia).– Environmental Geology, 57/8, 1707–1722. doi: 10.1007/s00254-008-1452-4