Fluid Evolution of the Čukaru Peki Cu-Au Porphyry System (East Serbia) inferred from a fluid inclusion study

Main Article Content

Miloš Velojić
Rade Jelenkovic
Vladica Cvetkovic


Čukaru Peki is a recently discovered copper-gold deposit in the Bor metallogenic zone in east Serbia. Three types of mineralization can be distinguished in this ore deposit: porphyry, high-sulphidation, and transitional epithermal type. This research was focused on fluid inclusion analysis of genetically different veins from the porphyry and the transitional zones of Čukaru Peki with an aim of better understanding the fluid evolution and mineralization processes in this system. Seven types of veins were identified in the porphyry zone of Čukaru Peki and four of these veins contained transparent minerals which were suitable for fluid inclusion analysis. Eight types of inclusion assemblages were distinguished in these veins: type 1 – primary inclusions with homogenization temperatures above 550°C and high salinity, type 2a- scattered polyphase inclusions two salt crystals, type 2b-polyphase inclusions with two salt crystals in crystal growth zones, type 3- brine inclusions with one  salt crystal in crystal growth zones, type 4- vapour-rich inclusions, type 5- primary inclusions in anhydrite, and types 6 and 7- secondary low-temperature inclusions This research suggests that saline fluids (30-40% wt.% NaCl eq.) were the most important ones for the formation of porphyry-type mineralization and that the mineralization was formed at temperatures between 350 and 450°C and pressures between 100 and 500 bars. The epithermal stage was characterized by cooler low-salinity fluids with temperatures between 150-350°C, and salinity between 0 and 7 wt.% NaCl eq.


Download data is not yet available.

Article Details

Original Scientific Papers


BAILLY, L., STEIN, G. AND GENNA, A. (2002) Preliminary microthermometric measurements in quartz, sphalerite and enargite from the Bor and Majdanpek deposits, Serbia. In: Proceedings: Geology and Metallogeny of Copper and Gold Deposits in the Bor Metallogenic Zone—Bor 100 Years International Symposium, Bor Lake, Yugoslavia, 2002, 71-75.

BAKKER, R. J. (2012). Package FLUIDS. Part 4: Thermodynamic modelling and purely empirical equations for H2O-NaCl-KCl solutions. Mineralogy and petrology, 105(1-2), 1-29. doi: 10.1007/s00710-012-0192-z

BAKKER R. J. (2018). AqSo_NaCl: Computer program to calculate p-T-X-v properties in the H2O-NaCl fluid system applied to fluid inclusion research and pore fluid circulation. - Comput. Geosci., 115, 122-133. doi: 10.1016/j.cageo.2018.03.003

BANJEŠEVIĆ, M. & LARGE, D. (2014): Geology and mineralization of the new copper and gold discovery south of Bor Timok magmatic complex.– Proceedings of the XVI Serbian Geological Congress, Serbian Geological Society, Donji Milanovac, 2014, 739–741.

BANJEŠEVIĆ, M., CVETKOVIĆ, V., VON QUADT, A., LJUBOVIĆ OBRADOVIĆ, D., VASIĆ, N., PAČEVSKI, A., & PEYTCHEVA, I. (2019). New Constraints on the Main Mineralization Event Inferred from the Latest Discoveries in the Bor Metallogenetic Zone (BMZ, East Serbia). - Minerals, 9(11), 672. doi: 10.3390/min9110672

BODNAR, R.J. (1993) Revised equation and table for determining the freezing point depression of H2O-NaCl solutions. - Geochimica et Cosmochimica Acta, 57, 683-684. doi: 10.1016/0016-7037(93)90378-A

BODNAR, R. J., & SAMSON, I. (2003). Reequilibration of fluid inclusions. - Fluid inclusions: Analysis and interpretation, 32, 213-230.

BODNAR, R.J., LECUMBERRI-SANCHEZ, P., MONCADA, D. AND STEELE-MACINNIS, M. (2014). 13.5—Fluid inclusions in hydrothermal ore deposits. Treatise on Geochemistry, Second Editionth edn. Elsevier, Oxford, pp.119-142. doi: 10.1016/b978-0-08-095975-7.01105-0

DRIESNER, T., & HEINRICH, C. A. (2007). The system H2O–NaCl. Part I: Correlation formulae for phase relations in temperature–pressure–composition space from 0 to 1000 C, 0 to 5000 bar, and 0 to 1 XNaCl. Geochimica et Cosmochimica Acta, 71(20), 4880-4901. doi: 10.1016/j.gca.2006.01.033

FOURNIER, R. O. (1999). Hydrothermal processes related to movement of fluid from plastic into brittle rock in the magmatic-epithermal environment. - Economic Geology, 94(8), 1193-1211. doi: 10.2113/gsecongeo.94.8.1193

GALLHOFER, D.; VON QUADT, A.; PEYTCHEVA, I.; SCHMID, S.M.; HEINRICH, C.A. (2015) Tectonic, magmatic, and metallogenic evolution of the Late Cretaceous arc in the Carpathian-Balkan orogeny. - Tectonics, 34, 1813–1836. doi: 10.1002/2015TC003834

GOLDSTEIN, R. H., & SAMSON, I. (2003) Petrographic analysis of fluid inclusions. - Fluid inclusions: Analysis and interpretation, 32, 9-53.

HAAR, L. (1984). NBS/NRC steam tables. CRC Press.

HAAS, J.L., (1976) Physical properties of the coexisting phases and thermochemical properties of the h2o component in boiling NaCl solutions. - US Geological Survey Bulletin, 1421-A, 1-71.

HEINRICH, C. A. (2005). The physical and chemical evolution of low-salinity magmatic fluids at the porphyry to epithermal transition: a thermodynamic study. - Mineralium Deposita, 39(8), 864-889. doi: 10.1007/s00126-004-0461-9

HEINRICH, C. A., HALTER, W., LANDTWING, M. R., & PETTKE, T. (2005). The formation of economic porphyry copper (-gold) deposits: constraints from microanalysis of fluid and melt inclusions. - Geological Society, London, Special Publications, 248(1), 247-263. doi: 10.1144/GSL.SP.2005.248.01.13

JANKOVIĆ, S. (1990) The ore deposits of Serbia: Regional metallogenic settings, environments of deposition, and types. - Faculty of Mining and Geology, Belgrade (in Serbian with English summary).

JELENKOVIĆ, R. (2014): A brief overview of the metallic mineral resources of Serbia. - European Geologist, 37: 34-38.

JELENKOVIĆ, R., Milovanović, D., Koželj, D. and Banješević, M., (2016) The mineral resources of the Bor metallogenic zone: a review. - Geologia Croatica, 69(1), 143-155. doi: 10.4154/gc.2016.11

JOHN, D. A., AYUSO, R. A., BARTON, M. D., BLAKELY, R. J., BODNAR, R. J., DILLES, J. H., ... & TAYLOR, R. D. 2010. Porphyry copper deposit model. Scientific investigations report.

KOLB, M., VON QUADT, A., PEYTCHEVA, I., HEINRICH, C. A., FOWLER, S. J., & CVETKOVIĆ, V. (2013). Adakite-like and normal arc magmas: distinct fractionation paths in the East Serbian segment of the Balkan–Carpathian arc. - Journal of Petrology, 54(3), 421-451. doi: 10.1093/petrology/egs072

KOŽELJ, D.I. (2002) Epitermalna mineralizacija zlata borske metalogenetske zone: morfogenetski tipovi, strukturno-teksturni varijeteti i potencijalnost. (Epithermal gold mineralization in the bor metallogenic zone: morphogenetic types, structural-texture varieties and potentiality-in Serbian, with English summary) RTB Bor, Institut za bakar, Indok centar.

LECUMBERRI-SANCHEZ, P., STEELE-MACINNIS, M., & BODNAR, R. J. (2012). A numerical model to estimate trapping conditions of fluid inclusions that homogenize by halite disappearance. - Geochimica et Cosmochimica Acta, 92, 14-22. doi: 10.1016/j.gca.2012.05.044

LECUMBERRI-SANCHEZ, P., STEELE-MACINNIS, M., WEIS, P., DRIESNER, T., & BODNAR, R. J. (2015). Salt precipitation in magmatic-hydrothermal systems associated with upper crustal plutons. - Geology, 43(12), 1063-1066. doi: 10.1130/G37163.1

LI, S., ZHANG, X., & GAO, L. (2019). Ore Genesis at the Jinchang Gold–Copper Deposit in Heilongjiang Province, Northeastern China: Evidence from Geology, Fluid Inclusions, and H–O–S Isotopes. - Minerals, 9(2), 99. Doi: 10.3390/min9020099

MAO, W., RUSK, B., YANG, F., & ZHANG, M. (2017). Physical and chemical evolution of the Dabaoshan porphyry Mo deposit, South China: Insights from fluid inclusions, cathodoluminescence, and trace elements in quartz. - Economic Geology, 112(4), 889-918. doi: 10.2113/econgeo.112.4.889

MAVROGENES, J. A., & BODNAR, R. J. (1994). Hydrogen movement into and out of fluid inclusions in quartz: experimental evidence and geologic implications. - Geochimica et Cosmochimica Acta, 58(1), 141-148. doi: 10.1016/0016-7037(94)90452-9

NEUBAUER, F. (2002) Contrasting Late Cretaceous with Neogene ore provinces in the Alpine-Balkan-Carpathian-Dinaride collision belt: Geological Society London Special Publication 204, p. 90–100. doi: 10.1144/gsl.sp.2002.204.01.06

NI 43-101 Preliminary economic assessment of the Cukaru Peki upper zone deposit, Serbia, March 2016
ORLANDEA, EUGEN & VLAD, ŞERBAN-NICOLAE (2020) A novel conceptual model of intrusion related gold bearing systems and exploration tools. - Studia UBB Geologia 63 (1), 1-12. doi: 10.5038/1937-8602.63.1.1304

POTTER, R.W., CLYNNE, M.A. AND BROWN, D.L., (1978). Freezing point depression of aqueous sodium chloride solutions. - Economic Geology, 73(2), 284-285. doi: 10.2113/gsecongeo.73.2.284

REDMOND, P. B., EINAUDI, M. T., INAN, E. E., LANDTWING, M. R., & HEINRICH, C. A. (2004). Copper deposition by fluid cooling in intrusion-centered systems: New insights from the Bingham porphyry ore deposit, Utah. - Geology, 32(3), 217-220. doi: 10.1130/G19986.1

RICHARDS, J. P. (2005). Cumulative factors in the generation of giant calc-alkaline porphyry Cu deposits. Super porphyry copper and gold deposits: A global perspective, 1, 7-25.

ROEDDER, E. (1984). Fluid inclusions. De Gruyter.

RUSK, BRIAN G., REED, MARK H., AND DILLES, JOHN H. (2008) Fluid inclusion evidence for magmatic-hydrothermal fluid evolution in the porphyry copper-molybdenum deposit at Butte, Montana. Economic Geology, 103 (2). 307-334. doi: 10.2113/gsecongeo.103.2.307

SILLITOE, R.H., (2010) Porphyry copper systems. - Economic geology, 105(1), 3-41. doi: 10.2113/gsecongeo.105.1.3

STEELE-MACINNIS, M., LECUMBERRI-SANCHEZ, P. AND BODNAR, R.J., (2012) HOKIEFLINCS-H2O-NACL: A Microsoft Excel spreadsheet for interpreting microthermometric data from fluid inclusions based on the PVTX properties of H2O–NaCl. - Computers Geosciences, 49: 334–337. Doi: 10.1016/j.cageo.2012.01.022

STERNER, S.M., HALL, D.L. & BODNAR, R.J. (1988) Synthetic fluid inclusions. V. Solubility relations in the system NaCl-KCl-H20 under vapor-saturated conditions. - Geochimica et Cosmochimica Acta, 52, 989-1005.

STRASHIMIROV S. (1997) New data about the development of hydrothermal system in the Majdanpek porphyry copper deposit. In Proceedings of Symposium “Ore deposit exploration“, Belgrade 2-4.April 1997, 409-418.

VANKO, D.A. AND BACH, W. (2005) Heating and freezing experiments on aqueous fluid inclusions in anhydrite: Recognition and effects of stretching and the low-temperature formation of gypsum. - Chemical Geology, 223(1-3), 35-45. doi: 10.1016/j.chemgeo.2004.11.021

VELOJIĆ M., ERLANDSSON B.V.(2019) Trace elements in different veins by LA-ICP-MS in Chukaru Peki high sulfidation deposit, Serbia. In: 1st International Student Conference on Geochemistry and Mineral Deposits, Prague.

WILKINSON, J. J. (2001) Fluid inclusions in hydrothermal ore deposits. - Lithos, 55(1-4), 229-272. doi: 10.1016/s0024-4937(00)00047-5