Geological, geochemical and fluid inclusion investigations on the Duna Pb-Ba-(Ag) deposit, Central Alborz, North Central Iran

Main Article Content

Alireza Sadeghi
Nima Nezafati
Saeid Hakimi-Asiabar
Alireza Ganji

Abstract

The Duna Pb-Ba-(Ag) mine is located ca. 155 km north of Tehran in the central Alborz structural zone, northern Iran. The ore mineralization occurs as stratabound, epigenetic, E-W and WSWENE trending veins and veinlets in fracture-controlled as well as massive and open-space filling textures within a Permian dolomitic limestone host rock. Field observations as well as mineralogical and petrographic studies show dolomitization, silicification and possibly haematisation in the host rock. In the mineralization zone, galena and barite are the main minerals, followed by pyrite, quartz, chalcopyrite, tetrahedrite, sphalerite, calcite and supergene minerals such as covellite, malachite, azurite, cerussite, anglesite, and Fe-oxides. The chemical analyses of the highgrade ore samples show an average grade of 18.66 wt. % for Pb, 19.99 wt. % for Ba, and 120 ppm for Ag together with substantial quantities of Zn (0.15 wt. %), As (690 ppm), Cu (0.86 wt. %), Sb (0.25 wt. %), and Sr (0.56 wt. %). The amount of silver in some samples from the tunnel and discordant layers is up to 7030 ppm. The positive Eu/Eu⃰ ratio and the weak negative Ce/Ce⃰  anomaly in the ore samples were most likely inherited from magmatic water. The presence of minerals such as pyrite and chalcopyrite together with the co-precipitation of sphalerite and chalcopyrite suggest a high-temperature for mineralizing fluids. The homogenization temperatures of fluid inclusions from barite in concordant layers span between 135 and 165 ºC with salinities between 18.54 and 23.65 wt. % NaCl equivalent, while the homogenization temperatures of fluid inclusions from barite of  discordant layers span between 113 and 285 ºC with salinities between 7.34 and 23.65 wt. % NaCl equivalent. The structural, geological, geochemical, and mineralogical studies together with the paragenesis of the ore minerals and fluid inclusion data allow consideration of the Duna Pb-Ba-(Ag) mine as a two stage mineralization scenario; 1st stage /older/MVT-type (Early Cimmerian tectonic phase), and the second stage/younger/Irish-type (Laramide orogenic movements). The structural data, high temperature of the fluid inclusions, positive Eu/Eu⃰ ratio and high silver content, especially in the discordant layers, indicate the involvement of a magmatic water mixed with meteoric and connate fluids comparable to the Irishtype mineralization in the second stage, which formed along brecciated zones of the thrust faults. The second stage of mineralization was most likely influenced by the Akapol granitoid intrusive mass, which overprinted the 1st stage/older/MVT-type.

Downloads

Download data is not yet available.

Article Details

Section
Original Scientific Papers

References

AGHANABATI, A. (2004): Geology of Iran.– Geological Survey of Iran Publication. Tehran, 733 p.

ALAVI, M. (1991): Tectonic map of the Middle East (scale 1:5.000.000).– Geological Survey and Mineral Exploration of Iran, Tehran.

ALLEN, M., GHASSEMI, M.R., SHAHRABI, M. & QORASHI, M. (2003): Accommodation of late Cenozoic oblique shortening in the Alborz range, northern Iran.– J. Structural. Geol., 25, 659–672. doi.org/10.1016.s0191-8141 (02)00064-0

ANNELLS, R.N. (1975): Explanatory text of the Qazvin and Rasht quadrangles map.– Geological Survey of Iran, E3 and E4, 94 p.

ARRIBAS, A.J.R., CUNNINGHAM, C.G., RYTUBA, J.J., RYE, R.O., KELLY, C., PODWYSOCKI, M.H., McKEE, E. H. & TOSDAL, R. M. (1995): Geology, geochronology, fluid inclusions and isotope geochemistry of the Rodalquilar Au alunite deposits, Spain.– Economic Geology, 90, 795–822.

AXEN, G.J., STOCKLI, D.F., LAM, P., GUEST, B. & HASSANZADEH, J. (2001b): Implications of preliminary (U-Th/He cooling ages from the central Alborz Mountains, Iran.– Geological Society of America, Abstracts with Programs., 33, 257 p.

BAHARFIRUZI, K.H. & SHAFEII, A.R. (2005): Geological map of Javaherdeh sheet.– Geological Survey of Iran 1:100.000.

BAKKER, R.J. & JANSEN, B.H. (1990): Preferential water leakage from fluid inclusions by means of mobile dislocation.– Nature, 345, 58–60. doi: 10.1038/345058a0

BANKS, D.A., BOYCE, A.J. & SAMSON, I.M. (2002): Constraints on the Origins of Fluids Forming Irish Zn-Pb-Ba Deposits: Evidence from the Composition of Fluid Inclusions.– Economic Geology, 97, 471–480. doi: 10.2113/gsecongeo.97.3.471

BAZARGANI-GILANI, K. (1982): Die mittelpermischen Scichtgebundenen Blei-Zink-Schwerspat- Largestattendes Kalawanga Distriktes. Zentral Alborz, Iran (mit besonderer Berucksichtigung des Duna-Grubenfelds).– Diss univ. Heidelberg.

BEAN, R.E. (1983): The magmatic-Meteoric Transition.– Geothermal resources council, special report, 13, 245–253.

BERBERIAN, M. & KING, G.C.P. (1981): Towards a Paleogeography and Tectonic Evolution of Iran.– Can J Earth Sci, 8, 210–265. doi: 10.1139/e81-019

BODNAR, R.J., LECUMBERRI-SANCHEZ, P., MONCADA, D. & STEELE-MACLNNIS, S. (2014): Fluid inclusions in hydrothermal ore deposits.– In: HOLLAND, H.D. and TUREKIAN, K.K. (eds.): Treatise on Geochemistry, vol 133. Oxford, Elsevier, 119–142. doi: 10.1016/B978-0-08-095975-7.01105-0

BOYNTON, W.V. (1984): Cosmochemistry of the rare earth elements; meteorite studies.– In: HENDERSON, P., (ed.): Rare Earth Element Geochemistry. Amsterdam and New York, Elsevier Science, 63–114. doi: 10.1016/B978-0-444-42148-7.50008-3

BORTNIKOV, N.S., GENKIN, A.D., DOBROVOl’SKAYA, M.G., MURAVITSKAYA, G.N. & FILIMONVA, A.A. (1991): The Nature of Chalcopyrite Inclusions in sphalerite: Exsolution, Coprecipitation, or “Disease”?– Economic geology, 86/5, 1070–1082. doi: 10.2113/gsecongeo.86.5.1070

DAVIDHEISER-KROLL, B.J. (2014): Understanding the fluid pathways that control the Navan Ore body.– Ph. D. Thesis. University of Glasgow, Scotland.

DILL, H.G., WEISS, W, BOTZ, R. & DOHRMANN, R. (2011): Paleontological, mineralogical and chemical studies of syn genetic and epigenetic Pb-Zn-Ba-P mineralization at the stratotype of the K/P boundary (El kef area, Tunisia).– Int J Earth Sci, 100, 805-846. doi: 10.1007/s00531-010-0517-2

FURSICH, F.T., WILMSEN, M., SEYED-EMAMI, K., CECCA, F. & MAJIDIFARD, M. R. (2005): The upper Shemshak Formation (Toarcian-Aalenian) of the Eastern Alborz (Iran): Biota and palaeo environments during a transgressive-regressive cycles.– Facies, 51, 379–398. doi: 10.1007/s10347-005-0051-z

GHORBANI, M., (2013): The Economic Geology of Iran Mineral deposits and natural resources.– Springer, 569 p. doi:10.1007/978-94-007-5625-0

GIZE, A.P. & BARNES, H.L. (1987): The organic geochemistry of two Mississippi valley-type lead-zinc deposits.- Economic Geology, 82/2, 457–470. Doi: 10.2113/gsecongeo.82.2.457

GOODFELLOW, W. & LYDON, J. (2007): SEDEX deposits.– Geological Survey of Canada, 16 p.

GOLDSTEIN, R.H. & REYNOLDS, T.J. (1994): Systematics of fluid inclusion in diagnostic minerals: SEPM short course 31.– Society for Sedimentary Geology, Tulsa OK, pp 199.

GOLONKA, J. (2004): Plate tectonic evolution of the southern margin of Eurasia in the Mesozoic and Cenozoic.– Tectonophysics., 381, 235–273. doi.org/10.1016/j.tecto.2002.06.004

GUEST, B., AXEN, G.J., LAM, P.S. & HASSANZADEH, J. (2006): Late Cenozoic shortening in the west-central Alborz Mountain, northern Iran, by combined conjugate strike slip and thin-skinned deformation.– Geosphere., 2/1, 35–52. doi: 10.1130/GES00019.1

HAKIMI ASIABAR, S. (2019): Structural deformations of the Duna mine area.- Journal of Earth Sciences.– Geological Survey & Mineral Explorations of Iran, 28, 235–246.

HAKIMI ASIABAR, S. & BAGHERIYAN, S. (2018): Exhumation of the Deylaman fault trend and its effects on the deformation style of the western Alborz belt in Iran.– Int J Earth Sci (Geol Rundsch), 1–13. doi: 10.1007/s00531-017-1507-4

HASHEMIAN, E., JAMALI, H. & AHMADIAN, J. (2018): Mineralogy, Fluid inclusion and Geochemistry of Tappeh-Khargosh Cu-Au deposit (SW of Ardestan), Iran.– Journal of Economic geology, 10/2, 299–324.

HASSANZADEH, J., GHAZI, A.M., AXEN, G., GUEST, B., STOCKLIN, D. & TUCKER, P. (2002): Oligocene mafic-alkaline magmatism in north and northwest of Iran: Evidence for the separation of the Alborz from the Urumieh-Dokhtar magmatic arc (abstract).– Geological Society of America, 34, 331 p.

HITZMAN, M.W. & BEATY, D.W. (1997): The Irish Zn-Pb-(Ba) orefield.– In: SANGSTER, D.F. (ed.): Carbonate-hosted Lead-Zinc deposits. Society of Economic Geologists, Special Publication, 4, 112–143.

HOLZER, H.F. & MOMENZADEH, M. (1969): Note on the geology of Elika and Duna lead mines, Central Alborz.– G.S.Iran, 14 p.

HORTON, B.K., HASSANZADEH, J., STOCKLI, D. F., AXEN, G. J., GILLIS, R. J., GUEST, B., AMINI, A.H., FAKHARI, M., ZAMANZADEH, S.M. & GROVE, M. (2008): Detrital zircon provenance of Neoproterozoic to Cenozoic deposits in Iran: Implications for chronosrtatigraphy and collisional tectonics.– Tectonophysics, 451/1-4, 97–122. doi: 10.1016/j.tecto.2007. 11 .063

KATO, Y. (1999): Rare earth elements as an indicator to origins of skarn deposit: example of the Kamioka Zn-Pb and Yoshiwara-Sonnatak Cu (-Fe) deposits in Japan.– Resourse geology, 49/4, 183–198. doi: 10.1111/j.1751-3928.1999.tb00045.x

LEACH, D.L., & SANGSTER, D.F. (1993): Mississippi Valley-type lead-zinc deposits.- In: KIRKHAM, R.V., SINCLAIR W.D., THORPE R.I. & DUKE, J.M. (eds.): Mineral Deposit Modeling. Geological Association of Canada Special Paper, 40, 289–314.

LEACH, D.L., SANGSTER, D.F., KELLEY, K.D., LARGE, R.R., GRAVEN, G., ALLEN, C.R., GUTZMER, J. & WALTERS, S. (2005): Sediment-hosted Pb-Zn deposits: A global perspective.– In: HEDENQUIST, J.W. et al. (Eds.): One Hundredth Anniversary Volume. doi: 105382.AV100.18

MC CLAY, K. & BONORA, M. (2000): Analog models of restraining stopovers in strikeslip fault systems.– AAPG Bulletin., 85/2, 233–260.

MC LENNAN, S.M. (1989): Rare earth elements in sedimentary rocks: Influence of provenance and sedimentary processes.– Reviews in Mineralogy, 21, 169–200.

MIRNEJAD, H., SIMONETTI. A. & MOLASALEHI, F. (2015): Origin and formational history of some Pb-Zn deposits from Alborz and Central Iran: Pb isotope constraints.– Int. Geol. Rev., 57, 463–471. doi: 10.1080/00206814.2015.1013510

MODARESNIA, M., KHOSROTEHRANI, K., MOMENI, I. & BABAZADEH, S.A. (2012): Upper Cretaceous planktonic foraminiferal biostratigraphy of East Dorfak area (Guilan – north of Iran).– Life Science Journal, 9/1, 242–253.

MONCADA, D., MUTCHLER, S., NIEBTO, A., REYNOLDS, T.J., RIMSTIDT, J.D. & BODNAR, R.J. (2012): Mineral textures and fluid inclusion petrography of the epithermal Ag-Au deposits at Guanajuato, Mexico: Application to exploration.– Journal of Geochemical Exploration, 114/12, 20–35. doi: 10.1016/j.gexplo.2011.12.001

NEJADHADAD, M., TAGHIPOUR, B., ZARASVANDI, A. & KARIMZADEH, S.A. (2015): Geological, Geochemical and Fluid inclusion evidences for the origin of the Ravanj Pb-Ba-Ag deposit, north of Delijan city, Markazi Province, Iran.– Turkish J Earth Sci., 25, 179–200. doi:10.3906/yer-1501-26

NEKOUVAGHT TAK, M., BAZARGANI-GUILANI. K. & FRAMARZI, M. (2009): Geology and Geochemistry of the lead-zinc carbonated hosted MVT mineralization in the north Semnan, Central Alborz., Iran.– In: Proccedings of 10th biennial SGA Meeting Townsville, Economic Geology Research Unit, James Cook University, 499–501.

PARADIS, S., HANNIGAN, P. & DEWING, K. (2007): Mississippi Valley-type leadzinc deposits.– In: GOODFELLOW, W.D. (ed.): Mineral Deposits of Canada: A Synthesis of Major Deposit-Types, District Metallogeny, the Evolution of Geological Provinces, and Exploration Methods. Geological Association of Canada, Mineral Deposits Division, Special Publication, 5, 185–203.

PASAND MAUSOUMI, j., GANJI, A., ANSARI, M. & MODARRESNIA, M. (2001): Geochemical study of trace elements and REE in Pb-Zn Ore deposits, Kelardasht area (central area).– J Environment. Geol., 9/6, 58–63.

PLUMLEE, C.S., LEACH, D.I., HOFSTRA, A. H., LANDIS, G. P., ROWAN, E. L. & VIETS, J. C. (1994): Chemical reaction path modeling of ore deposition in Mississippi Vally-type Pb-Zn deposits of the Ozark region, U.S. midcontinent.– Econ Geol, 90/5, 1346–1349. doi: 10.2113/gsecongeo.90.5.1346

QIAN, Z.H. (1987): Trace elements in Galena and Sphalerite and their geochemical significant in distinguishing the genetic types of Pb-Zn deposits.– Geochemistry, 26, 177–190. doi.org/10.1007/BF02872218

ROBB, L.J. (2005): Introduction to Ore-forming procecces.– Blackewll Publishing Australia, 373 p.

ROEDDER, E. (1984): Fluid inclusions.– Reviews in Mineralogy, 12, 644.

SAJJADI NASAB, M., VOSOGHI ABEDINI, M., EMAMI, M. & GHORBANI, M. (2000): Akapol Intrusive Mass Lithogenesis, Kelardasht Area, central Alborz, Iran. -91/23, 215–229.

SAMANI RAD, S. (1999): Geology, mineralogy and genesis of Duna Pb deposit from Central Alborz.– M. Sc. Thesis, Islamic Azad University, North Tehran Branch, Iran.

SAMSON, L. M. & RUSSELL, M.J. (1987): Genesis of the silvermines zinc-lead-barite deposit, Irland; fluid inclusion and stable isotope evidence.– Economic Geology., 82/2, 371–394. doi: 10.2113/gsecongeo.82.2.371

SHAHABPOUR, J. (2010): Feedback concept in the ore forming systems.– Resourse Geol., 60,109–115. Doi: 10.1111/j.1751-3928.2010.00118.x

SHEPHERD, T.J., RANKIN, A.H. & ALDERTON, D.H.M. (1985): A practical guide to Fluid Inclusion Studies.– Blackie, The University of California, 239 p.

STEELE-MACINNIS, M., BODNAR, R.J. & NADEN, J. (2011): Numerical model to determine the composition of H2O-NaCl-CaCl2 fluid inclusions based on microthermometric and microanalytical data.– Geochimica et Cosmochimica Acta, 75/1, 21–40. doi:10.1016/j.gca.2010.10.002

WHITNEY, D.L. & EVANS, B.W. (2010): Abbreviations for names of rock-forming minerals.– American Mineralogist.., 95, 185–187. doi: 10.2138/am.2010.3371

WILKINSON, J.J. & EYRE, S.L. (2005): Ore-Forming Processes in Irish-Type Carbonate-hosted Zn-Pb Deposits: Evidence from Mineralogy, Chemistry, and Isotopic Composition of Sulphides at the Lisheen Mine.– Economic Geology, 100, 63–86.

WILKINSON, J.J. (2001): Fluid inclusion in hydrothermal ore deposits.– Lithos., 55, 229–272. doi: 10.1016/S0024-4937(00)00047-5

WILKINSON, J.J. & HITZMAN, M.W. (2015): The Irish Zn-Pb Orefield: The view from 2014.– In: Current Perspectives in Zinc Deposits. Irish association for economic geology, Geological survey of Ireland., 59–69.

YAGHOOBPOUR, M. (2004): Investigation of geochemical, Isotopic and fluid inclusion related to the source Pb-Zn ore deposit in Duna.– M. Sc, Tehran-Shomal University.

ZANCHI, A., ZANCHETTA, S., GARZANTI, E., BALINI, M., BERRA, F., MATTEI, M. & MUTTONI, G. (2009): The Cimmerian evolution of the Nakhlak-Anarak area, Central Iran and its bearing for the reconstruction of the history of the Eurasian margin.– In: BRUNET, M. F., WILMSEN, M., GRANATH, J.W. (eds.): South Caspian to Central Iran basins. Geological Society, London, Special Publications, 312, 261–286. doi:10.1144/SP312.1

ZARTMAN, R.E. & DOE, B.R. (1981): Plombotectonics, The model.– Tectonophysics, 75/1–2, 135–162. doi: 10.1016/0040-1951(81)90213-4