Non-traditional stable isotope signatures in geological matrices as a tool for interpreting environmental changes – a review

Main Article Content

Željka Fiket
Martina Furdek Turk
Maja Ivanić
Goran Kniewald


The development of new analytical techniques enabled the precise determination of the expanded set of stable isotopes and provided new insight into the existing geological issues. This review outlines recent studies of non-traditional isotope signatures in geological matrices, summarizing in one place new data for stable isotopes of Ca, Mg, Sr, Li, Ni, Cr, and Cu and their application in the interpretation of environmental processes. Although some of them, such as δ44Ca and δ26Mg, have been previously used to track changes in seawater chemistry throughout geological history, recent studies report their application as geochemical proxies of post-depositional processes. Similarly, isotopic signatures of strontium, previously used in radioactive isotope chronology, and δ7Li, used in tracing plate subduction and crust/mantle material cycling, found a new application in studies of weathering patterns. The use of δ53Cr and δ 65Cu isotope signatures, on the other hand, reflects their fractionation under different redox conditions, whereas δ60Ni, due to its co-precipitation with sulfide species and Fe-Mn phases, is used in interpreting the contributions of different material sources. And while the isotopic signatures of all these elements indicate certain environmental conditions and processes (e.g., post-depositional processes, redox conditions, organic matter input, the contribution of sources, etc.), combining them a more comprehensive insight into the investigated environment can be achieved.


Download data is not yet available.

Article Details

Review Papers


AHM, A.S.C., BJERRUM, C.J., BLÄTTLER, C.L., SWART, P.K. & HIGGINS, J.A. (2018): Quantifying early marine diagenesis in shallow-water carbonate sediments.– Geochim. Cosmochim. Acta, 236, 140–159.
doi: 10.1016/j.gca.2018.02.042

ANDREWS, M.G., JACOBSON, A.D., LEH, G.O., HORTON, T.W. & CRAW, D. (2016): Radiogenic and stable Sr isotope ratios (87Sr/86Sr, δ88/86Sr) as tracers of riverine cation sources and biogeochemical cycling in the Milford Sound region of Fiordland New Zealand. isotopes as palaeoceanographic tracers.– Geochim. Cosmochim. Acta, 173, 284–303. doi: 10.1016/j.gca.2015.10.005

BACONNAIS, I., ROUXEL, O., DULAQUAIS, G. & BOYE, M. (2018): Determination of the copper isotope composition of seawater revisited: A case study from the Mediterranean Sea.– Chem. Geol., 511, 465–480.
doi: 10.1016/j.chemgeo.2018.09.009

BLÄTTLER, C.L., MILLER, N.R. & HIGGINS, J.A. (2015): Mg and Ca isotope signatures of authigenic dolomite in siliceous deep-sea sediments.– Earth Planet. Sc. Lett., 419, 32–42. doi: 10.1016/j.epsl.2015.03.006

BÖHM, F., GUSSONE, N., EISENHAUER, A., DULLO, W.C., REYNAUD, S. & PAYTAN, A. (2006): Calcium isotope fractionation in modern scleractinian corals.– Geochim. Cosmochim. Acta, 70/17, 4452–4462.
doi: 10.1016/j.gca.2006.06.1546

BONNAND, P., JAMES, R.H., PARKINSON, I.J., CONNELLY, D.P. & FAIRCHILD, I.J. (2013). The chromium isotopic composition of seawater and marine carbonates.– Earth Planet Sc. Lett., 382, 10–20.
doi: 10.1016/j.epsl.2013.09.001

BOYLE, E.A., JOHN, S., ABOUCHAMI, W., ADKINS, J.F., ECHEGOYEN-SANZ, Y. et al. (2012): GEOTRACES IC1 (BATS) contamination-prone trace element isotopes Cd Fe Pb Zn Cu and Mo intercalibration.– Limnol. Oceanogr. Meth., 10, 653–665. doi: 10.4319/lom.2012.10.653

BRADBURY, H.J. & TURCHYN, A.V. (2018): Calcium isotope fractionation in sedimentary pore fluids from ODP Leg 175: Resolving carbonate recrystallization.– Geochim. Cosmochim. Acta, 236, 121–139.
doi: 10.1016/j.gca.2018.01.040

BRAND, W.A., COPLEN, T.B., VOGL, J., ROSNER, M. & PROHASKA, T. (2014): Assessment of international reference materials for isotope-ratio analysis (IUPAC Technical Report).– Pure Appl. Chem., 86/3, 425–467.
doi: 10.1515/pac-2013-1023
COPLEN, T.B. (2011): Guidelines and recommended terms for expression of stable‐isotope‐ ratio and gas‐ratio measurement results.– Rapid Commun. Mass Spectrom., 25, 2538–2560. doi: 10.1002/rcm.5129

BRAZIER, J.-M., SCHMITT, A.-D., GANGLOFF, S., PELT, E., CHABAUX, F. & TERTRE, E. (2019): Calcium isotopic fractionation during adsorption onto and desorption from soil phyllosilicates (kaolinite montmorillonite and muscovite).– Geochim. Cosmochim. Acta, 250, 324–347. doi: 10.1016/j.gca.2019.02.017

BRUGGMANN, S., SCHOLZ, F., KLAEBE, R.M., CANFIELD, D.E. & FREI, R. (2019): Chromium isotope cycling in the water column and sediments of the Peruvian continental margin.– Geochim. Cosmochim. Acta, 257, 224–242. doi: 10.1016/j.gca.2019.05.001

CAMERON, V. & VANCE, D. (2014): Heavy nickel isotope compositions in rivers and the oceans.– Geochim. Cosmochim. Acta., 128, 195–211. doi: 10.1016/j.gca.2013.12.007

CAMERON, V., VANCE, D., ARCHER, C. & HOUSE, C.H. (2009). A biomarker based on the stable isotopes of nickel.– P. Natl. Acad. Sci. USA, 106/27, 10944–10948. doi: 10.1073/pnas.0900726106

CHAN, L.H., LEEMAN, W.P. & PLANK, T. (2006): Lithium isotopic composition of marine sediments.– Geochem. Geophys. Geosy., 7/6, 1–25. doi: 10.1029/2005GC001202

CHANDA, P. & FANTLE, M.S. (2017): Quantifying the effect of diagenetic recrystallization on the Mg isotopic composition of marine carbonates.– Geochim. Cosmochim. Acta, 204, 219–239. doi: 10.1016/j.gca.2017.01.010

CISCATO, E.R., BONTOGNALI, T.R.R. & VANCE, D. (2018): Nickel and its isotopes in organic-rich sediments: implications for oceanic budgets and a potential record of ancient seawater.– Earth Planet. Sc. Lett., 494, 239–250. doi: 10.1016/j.epsl.2018.04.061

COPLEN, T.B. (2011): Guidelines and recommended terms for expression of stable‐isotope‐ ratio and gas‐ratio measurement results.– Rapid Commun. Mass Spectrom., 25, 2538–2560. doi: 10.1002/rcm.5129

DE SOUZA, G.F., REYNOLDS, B.C., KICZKA, M. & BOURDON, B. (2010): Evidence for mass dependent isotopic fractionation of strontium in a glaciated granitic watershed.– Geochim. Cosmochim. Acta, 74/9, 2596–2614. doi: 10.1016/j.gca.2010.02.012

FANTLE, M.S. & HIGGINS, J. (2014): The effects of diagenesis and dolomitization on Ca and Mg isotopes in marine platform carbonates: Implications for the geochemical cycles of Ca and Mg.– Geochim. Cosmochim. Acta, 142, 458–481. doi: 10.1016/j.gca.2014.07.025

FANTLE, M.S., & TIPPER, E.T. (2014): Calcium isotopes in the global biogeochemical Ca cycle: Implications for development of a Ca isotope proxy.– Earth-Sci. Rev., 129, 148–177. doi: 10.1016/j.earscirev.2013.10.004

FIETZKE, J. & EISENHAUER, A. (2006): Determination of temperature-dependent stable strontium isotope (88Sr/86Sr) fractionation via bracketing standard MC-ICPMS.– Geochem. Geophys. Geosy., 7/8, Q08009. doi: 10.1029/2006GC001243

GALL, L., WILLIAMS, H., SIEBERT, C., HALLIDAY, A., HERRINGTON, R. & HEIN, J. (2013). Nickel isotopic compositions of ferromanganese crusts and the constancy of deep ocean inputs and continental weathering effects over the Cenozoic.– Earth Planet Sc. Lett., 375, 148–155. doi: 10.1016/j.epsl.2013.05.019

GALY, A., BAR-MATTHEWS, M., HALICZ, L., & O’NIONS, R.K. (2002). Mg isotopic composition of carbonate: insight from speleothem formation.– Earth Planet Sc. Lett., 201/1, 105–115. doi: 10.1016/S0012-821X(02)00675-1

GILLEAUDEAU, G.J., FREI, R., KAUFMAN, A.J., KAH, L.C., AZMY, K., BARTLEY, J.K., CHERNYAVSKIY, P. & KNOLL, A.H. (2016): Oxygenation of the mid-Proterozoic atmosphere: clues from chromium isotopes in carbonates.– Geochem. Perspec. Lett., 2, 178–187. doi: 10.7185/geochemlet.1618

GUEGUEN, B., ROUXEL, O., ROUGET, M.-L., BOLLINGER, C., PONZEVERA, E., GERMAIN, Y. & FOUQUET, Y. (2016): Comparative geochemistry of four ferromanganese crusts from the Pacific Ocean and significance for the use of Ni isotopes as palaeoceanographic tracers.– Geochim. Cosmochim. Acta, 189, 214–235.
doi: 10.1016/j.gca.2016.06.005

UO, B., ZHU, X., DONG, A., YAN, B., SHI, G. & ZHAO, Z. (2019): Mg isotopic systematic and geochemical applications: a critical review.– J. Asian Earth Sci., 176, 368-385. doi: 10.1016/j.jseaes.2019.03.001

HALICZ, L., SEGAL, I., FRUCHTER, N., STEIN, M. & LAZAR, B. (2008): Strontium stable isotopes fractionate in the soil environments?– Earth Planet Sc. Lett., 272/1–2, 406–411. doi: 10.1016/j.epsl.2008.05.005

marine diagenesis, and the chemistry of shallow-water carbonate sediments.– Geochim. Cosmochim. Acta, 220, 512–534. doi: 10.1016/j.gca.2017.09.046

HIPPLER, D., EISENHAUER, A. & NÄGLE, T.F. (2006): Tropical Atlantic SST history inferred from Ca isotope thermometry over the last 140 ka.– Geochim. Cosmochim. Acta, 70, 90–100. doi: 10.1016/j.gca.2005.07.022

HU, Z., HU, W., LIU, C., SUN, F., LIU, Y. & LI, W. (2019): Conservative behavior of Mg isotopes in massive dolostones: From diagenesis to hydrothermal reworking.– Sediment Geol., 381, 65–75.
doi: 10.1016/j.sedgeo.2018.12.007

KIMMIG, S.R. & HOLMDEN, C. (2017): Multi-proxy geochemical evidence for primary aragonite precipitation in a tropical-shelf ‘calcite sea’ during the Hirnantian glaciation.– Geochim. Cosmochim. Acta, 206, 254–272. doi: 10.1016/j.gca.2017.03.010

KRABBENHÖF, A., EISENHAUER, A., BÖHMA, F., VOLLSTAEDT, H., FIETZKE, J., LIEBETRAU, V., AUGUSTIN, N., PEUCKER-EHRENBRINK, B., MÜLLER, M.N., HORN, C., HANSEN, B.T., NOLTE, N. & WALLMANN, K. (2010): Constraining the marine strontium budget with natural strontium isotope fractionations (87Sr/86Sr* δ88/86Sr) of carbonates hydrothermal solutions and river waters.– Geochim. Cosmochim. Acta, 74, 4097–4109. doi: 10.1016/j.gca.2010.04.009

LI, W., BIALIK, O.M., WANG, X., YANG, T., HU, Z., HUANG, Q., ZHAO, S. & WALDMANN, N.D. (2019): Effects of early diagenesis on Mg isotopes in dolomite: the roles of Mn(IV)-reduction and recrystallization.– Geochim. Cosmochim. Acta, 250, 1–17. doi: 10.1016/j.gca.2019.01.029

LI, W.-Y., TENG, F.-Z., KE, S., RUDNICK, R.L., GAO, S., WU, F.-Y. & CHAPPELL, B.W. (2010): Heterogeneous magnesium isotopic composition of the upper continental crust.– Geochim. Cosmochim. Acta., 74/23, 6867–6884. doi: 10.1016/j.gca.2010.08.030

LITTLE, S.H., ARCHER, C., MILNE, A., SCHLOSSER, C., ACHTERBERG, E.P., LOHAN, M.C. & VANCE, D. (2018): Paired dissolved and particulate phase Cu isotope distributions in the South Atlantic.– Chem. Geol., 502, 29–43. doi: 10.1016/j.chemgeo.2018.07.022

LITTLE, S.H., VANCE, D., MCMANUS, J., SEVERMANN, S. & LYONS, T.W. (2017): Copper isotope signatures in modern marine sediments.– Geochim. Cosmochim. Acta, 212, 253–273. doi: 10.1016/j.gca.2017.06.019

LITTLE, S.H., VANCE, D., WALKER-BROWN, C. & LANDING, W. (2014): The oceanic mass balance of copper and zinc isotopes investigated by analysis of their inputs and outputs to ferromanganese oxide sediments.– Geochim. Cosmochim. Acta, 125, 673–693. doi: 10.1016/j.gca.2013.07.046

MARÉCHAL, C.N., TÉLOUK, P. & ALBARÈDE, F. (1999): Precise analysis of copper and zinc isotopic compositions by plasma-source mass spectrometry.– Chem. Geol., 156, 251–273. doi: 10.1016/S0009-2541(98)00191-0

MÍKOVÁ, J. (2012): Strontium isotopic composition as tracer of weathering processes, a review with respect to James Ross Island, Antarctica.– Czech Polar Rep., 2/1, 20–30. doi: 10.5817/CPR2012-1-3

MOYNIER, F., AGRANIER, A., HEZEL, D.C. & BOUVIER, A. (2010): Sr stable isotope composition of Earth, the Moon, Mars, Vesta and meteorites.– Earth Planet. Sci. Lett., 300/3–4, 359–366. doi: 10.1016/j.epsl.2010.10.017

MOYNIER, F., VANCE, D., FUJII, T. & SAVAGE, P. (2017): The Isotope Geochemistry of Zinc and Copper.– Rev. Mineral. Geochemistry, 82/1, 543–600. doi: 10.2138/rmg.2017.82.13

NÄGLER, T., EISENHAUER, A., MULLER, A., HEMLEBEN, C. & KRAMERS, J. (2000): The δ44Ca temperature calibration on fossil and cultured Globigerinoides sacculifer: new tool for reconstruction of past sea surface temperatures.– Geochem. Geophys. Geosy., 1, 2000GC000091. doi: 10.1029/2000GC000091

OCKERT, C., GUSSONE, N., KAUFHOLD, S. & TEICHERT, B.M.A. (2013): Isotope fractionation during Ca exchange on clay minerals in a marine environment.– Geochim. Cosmochim. Acta, 112, 374–388.
doi: 10.1016/j.gca.2012.09.041

OESER, R.A. & VON BLANCKENBURG, F. (2020): Strontium isotopes trace biological activity in the Critical Zone along a climate and vegetation gradient.– Chem. Geol., 119861. doi: 10.1016/j.chemgeo.2020.119861

OHNO, T. & HIRATA, T. (2007): Simultaneous determination of mass-dependent isotopic fractionation and radiogenic isotope variation of strontium in geochemical samples by multiple collector-ICP-mass spectrometry.– Anal. Sci., 23/11, 1275–1280. doi: 10.2116/analsci.23.1275

PENNISTON-DORLAND, S., LIU, X.-M. & RUDNICK, R.L. (2017): Lithium Isotope Geochemistry.– Rev. Mineral Geochem., 82/1, 165–217. doi: 10.2138/rmg.2017.82.6

PISTINER, J.S. & HENDERSON, G.M. (2003): Lithium-isotope fractionation during continental weathering processes.– Earth Planet Sc. Lett., 214, 327–339. doi: 10.1016/S0012-821X(03)00348-0

POGGE VON STRANDMANN, P.A.E., BURTON, K.W., JAMES, R.H., VAN CALSTEREN, P. & GISLASON, S.R. (2010): Assessing the role of climate on uranium and lithium isotope behavior in rivers draining a basaltic terrain.– Chem. Geol., 270/1–4, 227–239. doi: 10.1016/j.chemgeo.2009.12.002

POGGE VON STRANDMANN, P.A.E., BURTON, K.W., JAMES, R.H., VAN CALSTEREN, P., GISLASON, S.R. & MOKADEM, F. (2006): Riverine behaviour of uranium and lithium isotopes in an actively glaciated basaltic terrain.– Earth Planet Sc. Lett., 251/1–2, 134–147. doi: 10.1016/j.epsl.2006.09.001

POGGE VON STRANDMANN, P.A.E., BURTON, K.W., JAMES, R.H., VAN CALSTEREN, P., GISLASON, S.R. & SIGFÚSSON, B. (2008): The influence of weathering processes on riverine magnesium isotopes in a basaltic terrain.– Earth Planet Sc. Lett., 276/1–2, 187–197. doi: 10.1016/j.epsl.2008.09.020

POGGE VON STRANDMANN, P.A.E., SCHMIDT, D.N., PLANAVSKY, N.J., WEI, G., TODD, C.L. & BAUMANN, K.-H. (2019). Assessing bulk carbonates as archives for seawater Li isotope ratios.– Chem. Geol., 530, 119338. doi: 10.1016/j.chemgeo.2019.119338

RYAN, B.M., KIRBY, J.K., DEGRYSE, F., SCHEIDERICH, K. & MCLAUGHLIN, M.J. (2014): Copper Isotope Fractionation during Equilibration with Natural and Synthetic Ligands.– Environ. Sci. Technol., 48/15, 8620-8626. doi: 10.1021/es500764x

SAENGER, C. & WANG, Z. (2014): Magnesium isotope fractionation in biogenic and abiogenic carbonates: implications for palaeoenvironmental proxies.– Quat. Sci. Rev., 90, 1–21. doi: 10.1016/j.quascirev.2014.01.014

SAUZÉAT, L., RUDNICK, R.L., CHAUVEL, C., GARCON, M. & TANG, M. (2015): New perspectives on the Li isotopic composition of the upper continental crust and its weathering signature.– Earth Planet Sc. Lett., 428, 181–192. doi: 10.1016/j.epsl.2015.07.032

SCHEIDERICH, K., AMINI, M., HOLMDEN, C. & FRANCOIS, R. (2015): Global variability of chromium isotopes in seawater demonstrated by Pacific Atlantic and Arctic Ocean samples.– Earth Planet Sc. Lett., 423, 87–97. doi: 10.1016/j.epsl.2015.04.030

SCHER, H.D., GRIFFITH, E.M. & BUCKLEY, W.P.JR (2013): Accuracy and precision of 88Sr/86Sr and 87Sr/86Sr measurements by MC-ICPMS compromised by high barium concentrations.– Geochem. Geophys. Geosy., 15, 499–508. doi: 10.1002/2013GC005134

SCHOENBERG, S., ZINK, M., STAUBWASSER, M. & VON BLANCKENBURG, F. (2008): The stable Cr isotope inventory of solid Earth reservoirs determine by double spike MC-ICP-MS.– Chem. Geol., 249/3–4, 294–306. doi: 10.1016/j.chemgeo.2008.01.009

SEMENISHCHEV, V.S. & VORONINA, A.V. (2020): Isotopes of Strontium: Properties and Applications.– In: PATHAK, P. & GUPTA, D.K. (eds.): Strontium Contamination in the Environment, Springer International Publishing.

SEMENIUK, D., MALDONADO, M.T. & JACCARD, S.L. (2016): Chromium uptake and adsorption in marine phytoplankton – implications for the marine chromium cycle.– Geochim. Cosmochim. Acta, 184, 41–54.
doi: 10.1016/j.gca.2016.04.021

SHALEV, N., GAVRIELI, I., HALICZ, L., SANDLER, A., STEIN, M. & LAZAR, B. (2017): Enrichment of 88 Sr in continental waters due to calcium carbonate precipitation.– Earth Planet. Sci. Lett., 459, 381–393.
doi: 10.1016/j.epsl.2016.11.042

TAKANO, S., TANIMIZU, M., HIRATA, T. & SOHRIN, Y. (2014): Isotopic constraints on biogeochemical cycling of copper in the ocean.– Nat. Commun., 5, 5663. doi: 10.1038/ncomms6663

TENG, F.Z. (2017): Magnesium Isotope Geochemistry.– Rev. Mineral. Geochem., 82/1, 219–287.
doi: 10.2138/rmg.2017.82.7

TENG, F.-Z., DAUPHAS, N. & WATKINS, J.M. (2017): Non-Traditional Stable Isotopes: Retrospective and Prospective.– Rev. Mineral. Geochem., 82/1, 1–26. doi: 10.2138/rmg.2017.82.1

TENG, F.-Z., MCDONOUGH, W.F., RUDNICK, R.L., DALPÉ, C., TOMASCAK, P.B., CHAPPELL, B.W. & GAO, S. (2004): Lithium isotopic composition and concentration of the upper continental crust.– Geochim. Cosmochim. Acta, 68/20, 4167–4178. doi: 10.1016/j.gca.2004.03.031

THOMPSON, C.M. & ELLWOOD, M.J. (2014): Dissolved copper isotope biogeochemistry in the Tasman Sea, SW Pacific Ocean.– Mar. Chem., 165, 1–9. doi: 10.1016/j.marchem.2014.06.009

VANCE, D., ARCHER, C., BERMIN, J., PERKINS, J., STATHAM, P.J., LOHAN, M.C., ELLWOOD, M.J. & MILLS, R.A. (2008). The copper isotope geochemistry of rivers and the oceans.– Earth Planet Sc. Lett., 274/1–2, 204–213. doi: 10.1016/j.epsl.2008.07.026

VOLLSTAEDT, H., EISENHAUER, A., WALLMANN, K., BÖHM, F., FIETZKE, J., LIEBETRAU, V., KRABBENHÖFT, A., FARKAŠ, J., TOMAŠOVÝCH, A., RADDATZ, J. & VEIZER, J. (2014): The Phanerozoic δ88/86Sr record of seawater: new constraints on past changes in oceanic carbonate fluxes.– Geochim. Cosmochim. Acta, 128, 249–265.
doi: 10.1016/j.gca.2013.10.006

WAKAKI, S., OBATA, H., TAZOE, H. & ISHIKAWA, T. (2017): Precise and accurate analysis of deep and surface seawater Sr stable isotopic composition by double- spike thermal ionization mass spectrometry.– Geochem. J., 51/3, 227–239. doi: 10.2343/geochemj.2.0461

WIMPENNY, J., COLLA, C.A., YIN, Q.-Z., RUSTAD, J.R. & CASEY, W.H. (2014): Investigating the behaviour of Mg isotopes during the formation of clay minerals.– Geochim. Cosmochim. Acta, 128, 178–194.
doi: 10.1016/j.gca.2013.12.012