Evaluation Of 3D small-scale lithological heterogeneities and pore distribution of the Boda Claystone Formation using X-Ray Computed Tomography images (CT)

Main Article Content

Saja Mohammad Abutaha
János Geiger
Sándor Gulyás
Ferenc Fedor

Abstract

This study was undertaken to quantify and evaluate the density and porosity characteristics of a Boda Claystone Formation (BCF) core sample using medical CT. Each voxel of the 3D CT volume was described with three variables: dry CT number, saturated CT number, and effective porosity. Disparity pore voxels were revealed using the genetic groups’ algorithm of data-mining techniques. The K-fold cross-validation algorithm has been applied to determine the number of the most stable cluster. The 3D spatial distributions of voxel-porosity by rock constituents, as well as the 3D distribution of porosity clusters by rock components, were found by  Boolean function implementation.
The terrigenous detrital fragments had the lowest porosity mean (0.16%) and highest coefficient variation value (1039.39%). While the Fine siltstone component had the highest porosity mean (3.39%) and lower coefficient of variation (134.99%). The difference in the variation of coefficient proportions is related to the outlier ratios in each rock component.
Independently of both the rock types and the sedimentary structures, two clusters could be defined: one for the micro-porosity and one for the macro-porosity regimes. The former showed a continuous 3D spatial appearance, while the latter appeared in patches. These patches may also be connected, at least partly, to some local smectite aggregates. These clay minerals could lose their structured water content during vacuuming and swell when adsorbing water during sample saturation. In each rock type, the micro-porosity regime could be related to low-density rock fragments. The mean effective porosity of the micro-pore regime was about 0.02, which corresponds to the petrophysical core measurements. For the macro regimes, the average was 0.1.

Downloads

Download data is not yet available.

Article Details

Section
Original Scientific Papers

References

AHMAD, K.M., KRISTÁLY, F. & TURZO, Z. (2018): Effects of clay mineral and physico- chemical variables on sandstone rock permeability.– J Oil Gas Petrochem Sci., 1/1, 18–26. doi:10.30881/jogps.00006

AKIN, S., DEMIRAL, B. & OKANDAN, E. (1966): A Novel Method of Porosity Measurement Utilizing Computerized Tomography.– In Situ, 20 /4, 347–365.

AL-YASERI, A.Z., LEBEDEV, M., VOGT S.J., JOHNS, M.L., BARIFCANI, A. & IGLAUER, S. (2015): Pore-scale analysis of formation damage in Bentheimer sandstone with in-situ NMR and micro-computed tomography experiments.– J. Petrol. Sci., 129, 48–57. doi: 10.1016/j.petrol.2015.01.018

ARNS, C.H., KNACKSTEDT, M.A., PINCZEWSKI, W.V. & LINDQUIST, W.B. (2001): Accurate estimation of transport properties from microtomographic images.– Geophysical Research Letters, 28, 3361–3364. doi: 10.1029/2001GL012987

ATTIX, F.H. (1986): Introduction to Radiological Physics and Radiation Dosimetry.– Wiley-VCH. doi: 10.1002/9783527617135

BALÁZS, GY.L., LUBLÓY, É. & FÖLDES, T. (2018): Evaluation of Concrete Elements with X-Ray Computed Tomography.– J. Mater. Civ. Eng., 30/9, 06018010. doi: 10.1061/(ASCE)MT.1943-5533.0002389

BOGNER, P.T., FÖLDES, F. & ZÁVODA, I.R. (2003): Application of CTand MR in the carbon hydrogen research.– J. Hongroise Radiology, 77/5, 231–237.

BONNER, B.P., ROBERTS, J.J. & SCHNEBERK, D.J. (1994): Determining water content and distribution in reservoir graywacke from the northeast Geysers with X-ray computed tomography.– Geotherm. Resource Council Trans, 18, 305-310.

CNUDDE, V., MASSCHAELE, B., DIERICK, M., VLASSENBROECK, J., VAN HOOREBEKE, L. & JACOBS, P. (2006): Recent progress in X-ray CT as a geosciences tool.– Applied Geochemistry, 21/5, 826–832. doi: 10.1016/j.apgeochem.2006.02.010

COKER, D.A., TORQUATO, S. & DUNSMUIR, J.H. (1996): Morphology and physical properties of Fontainebleau sandstone via a tomographic analysis.– Journal of Geophysical Research, 101, 17497–17506. doi: 10.1029/96JB00811

COLES, M.E., HAZLETT, R.D., SPANNE, P., SOLL, W.E., MUEGGE, E.L. & JONES, K.W. (1998): Pore level imaging of fluid transport using synchrotron X-ray microtomography.– Journal of Petroleum Science and Engineering,19/1–2, 55–63. doi: 10.1016/S0920-4105(97)00035-1

COLES, M.E., MUEGGE, E.L. & SPRUNT, E.S. (1991): Applications of CAT scanning for oil and gas-production research.– IEEE Transactions on Nuclear Science, 38/2, 510–515. doi: 10.1109/NSSMIC.1990.693464

CORMACK, A.M. & HOUNSFIELD G.N. (1989): Physiology or medicine 1979: Press release. Accessed April 21, 2018. https://www.nobelprize.org/nobel_prizes/medicine/laureates/1979/press.html

CSONTOS, L. & VÖRÖS, A. (2004): Mesozoic plate tectonic reconstruction of the Carpathian region.– Palaeogeography, Palaeoclimatology, Palaeoecology, 210/1, 1–56. doi: 10.1016/j.palaeo.2004.02.033

FLANNERY, B.P., DECKMAN, H.W., ROBERGE, W.G. & D’AMICO, K.L. (1987): Three-dimensional X-ray microtomography.– Science, 237, 1439–1444. doi: 10.1126/science.237.4821.1439

FEDOR, F., MÁTHÉ, Z., ÁCS, P. & KORONCZ, P. (2018): New results of Boda Claystone research - genesis, mineralogy, geochemistry, petrophysics.– In: NORRIS, S., NEEFT, E.A.C. & VAN GEET, M. (eds.): Multiple Roles of Clays in Radioactive Waste Confinement. Geological Society, London, Special Publications, 482, doi: 10.1144/SP482.13

FÖLDES, T. (2011): Integrated processing based on CT measurement.– J. News Geom., 1, 23–41.

FÖLDES, T.B., KISS, G., ÁRGYELÁN, P., BOGNER, I. & REPA, K. HIPS. (2004): Application of medical computer tomography measurements in 3D reservoir characterization.– Acta Geologica Hungarica, 47/1, 63–73. doi: 10.1556/AGeol.47.2004.1.5

FREDRICH, J.T., GREAVES, R.H. & MARTIN, J.W. (1993): Pore geometry and transport properties of Fontainebleau sandstone.– International Journal of Rock Mechanics & Mining Sciences & Geomechanics Abstracts, 30, 691–697. doi: 10.1016/0148-9062(93)90007-Z

GARVEY, C.J. & HANLON, R. (2002): Computed tomography in clinical practice.– British Med. J., 324 /7345, 1077–1080. doi: 10.1136/bmj.324.7345.1077

GEIGER, J., HUNYADFALVI, Z. & BOGNER, P. (2009): Analysis of small-scale heterogeneity in clastic rocks by using computerized X-ray tomography (CT).– Eng. Geol., 103, 112–118. doi: 10.1016/j.enggeo.2008.06.011

GUNTORO, P.I., GHORBANI, Y., KOCH, P.H. & ROSENKRANZ, J. (2019): X-ray Microcomputed Tomography (μCT) for Mineral Characterization; A Review of Data Analysis Methods.– Minerals, 9, 183 p. doi: 10.3390/min9030183

HAAS, J. & PÉRÓ, C.S. (2004): Mesozoic evolution of the Tisza Mega-unit.– International Journal of Earth Sciences, 93, 297–313.

HAYATDAVOUDI, A. & GHALAMBOR, A. (1996): Controlling formation damage caused by kaolinite clay minerals: Part I.– In: SPE Formation Damage Control Symposium, Society of Petroleum Engineers, SPE-31118-MS. doi: 10.2118/31118-MS

HOUNSFIELD, G.N. (1973): Computerized transverse axial scanning (tomography). 1. Description of system.– Br. J. Radiol., 46/552, 1016–1022. doi: 10.1259/0007-1285-46-552-1016

HOVE, A.O., NILSEN, V. & LEKNES. J. (1988): Visualization of Xanthan Flood Behavior in Core Samples by Means of X-Ray Tomography.– SPEJDOE, 17342.

JONES, K.W., SPANNE, P., WEBB, S.W., CONNER, W.C., BEYERLEIN. R.A., REAGAN. W.J. & DAUTZENBERG, F.M. (1991): Catalyst Analysis using Synchrotron X-ray Microscopy.– Nuc. Inst. Meth. Phy. Res., 56–57, 427–432. doi: 10.1016/0168-583X(91)96063-Q

KNOLL, G.F. (2000): Radiation Detection and Measurement.– J. Wiley & Sons., 816 p.

KOCH, A., RAVEN, C., SPANNE, P. & SNIGIREVA, A. (1998); X-ray imaging with submicrometer resolution employing transparent luminescent screens.– Journal of the Optical Society of America. A, Optics and Image Science, 15/7, 1940–1951.

KONRÁD, G.Y. (1999): The Boda Claystone Formation. The Geology of today for tomorrow.– Excursion Guide Book (A satellite conference of the World Conference of Science, Budapest), 65–75.

KONRÁD, G.Y., SEBE, K., HALÁSZ, A. & BABINSZKI, E. (2010): Sedimentology of a Permian playa lake: The Boda Claystone Formation, Hungary.– Geologos, 16, 27–41. doi: 10.2478/v10118-010-0002-1

LEDLEY, R.S., CHIRO, G.D., LUESSENHOP, A.J. & TWIGG, H.L. (1974): Computerized transaxial X-ray tomography of the human body.– Science, 186, 207–212.

LONTOC-ROY, M., DUTILLEUL, P., PRASHER, S.O., HAN, L.W. & SMITH, D.L. (2005): Computed tomography scanning for three-dimensional imaging and complexity analysis of developing root systems.– Canadian Journal of Botany, 83, 1434–1442. doi: 10.1139/b05-118

LOUIS, L., WONG, T. F. & BAUD, P. (2007): Imaging strain localization by X-ray radiography and digital image correlation: deformation bands in Rothbach sandstone. – Journal of Structural Geology, 29/1, 129–140. doi: 10.1016/j.jsg.2006.07.015

MOSS, R.M., PEPIN, G.P. & DAVIS, L.A. (1990): Direct measurement of the constituent porosities in a dual porosity matrix.– SCA conference, 9003.

NAHMANI, J., CAPOWIEZ, Y. & LAVELLE, P. (2005): Effects of metal pollution on soil macroinvertebrate burrow systems.– Biology and Fertility of Soils, 42, 31–39. doi: 10.1007/s00374-005-0865-4

NÉMETH, T. & MÁTHÉ, Z. (2016): Clay mineralogy of the Boda Claystone Formation (Mecsek Mts., S.W. Hungary).– Open Geoscience, 8, 259–274. doi: 10.1515/geo-2016-0024

NICHOLS, M.C., KINNEY, J.H., JOHNSON, Q.C., SAROYAN, R.A., BONSE, U., NUSSHARDT. R. & PAHL. R. (1989): Synchrotron Microtomography of Supported Catalysts.– Rev. Sci. Inst., 60/7, 2475. doi: 10.1063/1.1140703

PURCELL, C., HARBERT, W., SOONG, Y., MCLENDON, TR, HALJASMAA, IV, MCINTYRE, D. & JIKICH, J. (2009): Velocity measurements in reservoir rock samples from the SACROC unit using various pore fluids, and integration into a seismic survey taken before and after a CO2 sequestration flood.– In: GALE, J., HERZOG, H. & BRAITSCH, J. (eds.): Energy Procedia: Greenhouse Gas Control Technologies, 9, Elsevier Science, Amsterdam, 2323–2331. doi: 10.1016/j.egypro.2009.01.302

PUSCH, R. & KARNLAND, O. (1996): Physico/chemical stability of smectite clays.– Engineering Geology, 41/1–4, 73–85. doi: 10.1016/0013-7952(95)00027-5

PYRAKNOLTE, L.J., MONTEMAGNO, C.D. & NOLTE, D.D. (1997): Volumetric imaging of aperture distributions in connected fracture networks.– Geophysical Research Letters, 24/18, 2343–2346.

RIBEIRO, J.L.B., LOPES, R.T., ANJOS, M.J., QUEIROZ NETO, J.C., BIANCO, L.C.B., CAMPOS, E.F. & D’ALMEIDA, A.R. (2007a): Study of performance with diverting agents in formation damage and return of permeability for unconsolidated sandstones using computed tomography.– In: 2006 IEEE Nuclear Science Symposium Conference Record. Ieee, San Diego, CA, 7,7p. doi: 10.1109/NSSMIC.2006.356039

SCHWARTZ, M.F., SAFFRAN, E.M., FINK, R.B., MYERS, J.L. & MARTIN, N. (1994): Mapping therapy: A treatment programme for agrammatism.– Aphasiology, 8/1, 19–54. doi: 10.1080/02687039408248639

SIEGBAHN, K. (1967): Alpha, beta, and gamma ray spectroscopy.– North-Holland, Amsterdam.

SIMON, D. & ANDERSON, M. (1990): Stability of clay minerals in acid.– In: SPE Formation Damage Control Symposium. Society of Petroleum Engineers, SPE-19422-MS, doi: 10.2118/19422-MS

SPANNE, P. & RIVERS, M. (1987): Computerized Microtomography using Synchrotron Radiation from the NSLS.– Nucl. Instr. Meth. Phy. Res., 24–25, 1063, 67p. doi: 10.1016/S0168-583X(87)80312-9

SPRUNT, E.S., DESAI, K.P., COLES, M.E., DAVIS. R.M. & MUEGGE, EL (1991): Cat Scan Monitored Electrical Resistivity Measurements Show Problems Achieving Homogeneous Saturation.– Soc Pet. Eng., 21433.

SUTTON, S.R., BERTSCH, P.M., NEWVILLE, M., RIVERS, M., LANZIROTTI, A. & ENG, P. (2002): Microfluorescence and microtomography analyses of heterogeneous earth and environmental materials.– In: FENTER, P., RIVERS, M., STURCHIO, N. & SUTTON, S. (eds.): Applications of Synchrotron Radiation in Low-Temperature Geochemistry and Environmental Sciences. Reviews in Mineralogy and Geochemistry, 49, 429–483. Doi: 10.1515/9781501508882-014

VAN KAICK, G. & DELORME, S. (2005): Computed tomography in various fields outside medicine.– European Radiology, 15/S4, D74–D81. 10.1007/s10406-005-0138-1

VARGA, A.R., SZAKMÁNY, GY., RAUCSIK, B. & MÁTHÉ, Z. (2005): Chemical composition, provenance and early diagenetic processes of playa lake deposits from the Boda Siltstone Formation (Upper Permian), SW Hungary.– Acta Geologica Hungarica, 48/1, 49–68. doi: 10.1556/AGeol.48.2005.1.2

VERHELST, F., VERVOORT, A., DE BOSSCHER, P.H. & MARCHAL, G. (1995): X-ray computerized tomography: determination of heterogeneities in rock samples.– In: Proc. 8th Int. Congress of Rock Mechanics, ISRM/Balkema, 1,105–108.

VINEGAR, H.J. & WELLINGTON, S.L. (1987): Tomographic imaging of three-phase flow experiments.– The Review of Scientific Instruments, 58/1, 96–107. doi: 10.1063/1.1139522

VOZÁROVÁ, A., EBNER, F., KOVÁCS, S., KRÄUTNER, H-G., SZEDERKÉNYI, T., KRISTIĆ, B., SREMAC, J., ALJINOVIČ, D., NOVAK, M. & SKABERNE, D. (2009): Late Variscan (Carboniferous to Permian) environments in the Circum Pannonian Region.– Geologica Carpathica, 60, 71–104.

WENNBERG, O.P., RENNAN, L. & BASQUET, R. (2009): Computed tomography scan imaging of natural open fractures in a porous rock; geometry and fluid flow.– Geophysical Prospecting, 57 /2, 239–249. doi: 10.1111/j.1365-2478.2009.00784.x

WESOLOWSKI, J.R. & H.M. LEV. (2005): CT: History, technology, and clinical aspects.– Seminars in Ultrasound, CT and MRI, 26/6, 376–379. doi: 10.1053/j.sult.2005.07.007

WITHJACK, E.M. (1988): Computed tomography for rock property determination and fluid flow visualization.– SPE Formation Evaluation, 3/4, 696–704. doi: 10.2118/16951-PA

YANG, Y., AYRAL, S. & GRYTE, C.C. (1984): Computer-Assisted Tomography for the Observation of Oil Displacement in Porous Media.– Soc. Pet. Eng. J., 24/1, 53–55. doi: 10.2118/11758-PA

ZHOU, Z., GUNTER, W. & JONASSON, R. (1995): Controlling formation damage using clay stabilizers: a review.– In: Annual Technical Meeting. Petroleum Society of Canada, PETSOC-95-71. doi: 10.2118/95-71