Dating and geochemistry of zircon and apatite from rhyolite at the UNESCO geosite Rupnica (Mt. Papuk, northern Croatia) and the relationship to the Sava Zone

Main Article Content

Petra Schneider
Dražen Balen
Joachim Opitz
Hans-Joachim Massonne


The Rupnica geosite, a key locality of the UNESCO-protected Papuk Geopark in northern Croatia, is well-known for an excellent exposure of columnar jointing in volcanic rock. This rock is defined as an albite rhyolite that comprises almost pure albite phenocrysts within a fine-grained matrix composed of microphenocrysts of albite, quartz and devitrified volcanic glass. Primary accessory minerals are clinopyroxene, apatite, zircon and magnetite. Haematite, apatite and anatase were found as inclusions in zircon. The albite rhyolite is characterized by a highly siliceous, peraluminous, oxidized (ferroan), dry, alkali-calcic to alkalic composition, with low CaO, MgO, and MnO contents and high FeOT/(FeOT+MgO) ratios. Normalized trace element contents display positive anomalies of K, Pb, and Zr as well as negative anomalies of Nb, P, Ti, Ba and Eu, together with an enrichment of light rare-earth elements (REE) relative to heavy REE. Zircon from the rhyolite of Rupnica is characterized by ratios of Th/U=1.13 and Zr/Hf=55 and contents of HfO2=1.04 wt. % typical for an early-stage igneous zircon crystallized from a dry high-temperature magma in a deep magma chamber. Apatite REE patterns show enrichment of light REE over heavy REE and a pronounced Eu anomaly, typical for apatite from granitoids formed in an oxidizing environment. The magma is of A-type and was generated at high  temperatures at 800–900 °C by partial melting of lower- to mid-crustal rocks. The age of the albite rhyolite of Rupnica is Late Cretaceous at 80.8±1.8 (2σ) Ma, according to U-Pb dating of zircon, coeval with geochemically similar igneous rocks of Mt. Požeška Gora and Mt. Kozara within the Sava Zone. 


Download data is not yet available.

Article Details

Original Scientific Papers


BALEN, D. & BROSKA, I. (2011): Tourmaline nodules: products of devolatilization within the final evolutionary stage of granitic melt?– Geol. Soc. London Spec. Publ., 350, 53–68. doi: 10.1144/SP350.4

BALEN, D. & PETRINEC, Z. (2011): Contrasting tourmaline types from peraluminous granites: a case study from Moslavačka Gora (Croatia).– Mineral. Petrol., 102, 117–134. doi: 10.1007/s00710-011-0164-8

BALEN, D. & PETRINEC, Z. (2014): Development of columnar jointing in albite rhyolite in a rapidly cooling volcanic environment (Rupnica, Papuk Geopark, Croatia).– Terra Nova, 26, 102–110. doi: 10.1111/ter.12075

BALEN, D., SCHUSTER, R., GARAŠIĆ, V. & MAJER, V. (2003): The Kamenjača olivine gabbro from Moslavačka Gora (South Tisia, Croatia).– Rad Hrvatske Akademije Znanosti i Umjetnosti, 486, 27, 57–76.

BALEN, D., HORVATH, P., TOMLJENOVIĆ, B., FINGER, F., HUMER, B., PAMIĆ, J. & ARKAI, P. (2006): A record of pre-Variscan Barrovian regional metamorphism in the eastern part of the Slavonian Mountains (NE Croatia).– Mineral. Petrol., 87/1, 143–162. doi: 10.1007/s00710-006-0120-1

BALEN, D., HORVÁTH, P., FINGER, F. & STARIJAŠ, B. (2013): Phase equilibrium, geothermobarometric and xenotime age dating constraints on the Alpine metamorphism recorded in chloritoid schists from the southern part of the Tisia Mega-Unit (Slavonian Mts., NE Croatia).– Int. J. Earth Sci. (Geol. Rundsch.), 102, 1091–1109. doi: 10.1007/s00531-012-0850-8

BALEN, D., MASSONNE, H.-J. & PETRINEC, Z. (2015): Collision-related Early Paleozoic evolution of a crustal fragment from the northern Gondwana margin (Slavonian Mountains, Tisia Mega-Unit, Croatia): Reconstruction of the P–T path, timing and paleotectonic implications.– Lithos, 232, 211–228. doi: 10.1016/j.lithos.2015.07.003

BALEN, D., MASSONNE, H.-J. & LIHTER, I. (2018): Alpine metamorphism of lowgrade schists from the Slavonian Mountains (Croatia): new P-T and geochronological constraints.– Int. Geol. Rev., 60/3, 288–304. doi: 10.1080/00206814.2017.1328710

BALEN, D., SCHNEIDER, P., MASSONNE, H.-J., OPITZ, J., LUPTAKOVA, J., PUTIŠ, M. & PETRINEC, Z. (2020): The Late Cretaceous A-type alkali-feldspar granite from Mt. Požeška Gora (N Croatia): Potential marker of fast magma ascent in the Europe–Adria suture zone.– Geol. Charpath., 71/4, 361–381. doi: 10.31577/Geol-Carp.71.4.5

BATCHELOR, R. A. & BOWDEN, P. (1985): Petrogenetic interpretation of granitoid rock series using multicationic parameters.– Chem. Geol., 48, 43–55. doi: 10.1016/0009-2541(85)90034-8

BAU, M. (1996): Controls on the fractionation of isovalent trace elements in magmatic and aqueous systems: evidence from Y/Ho, Zr/Hf, and lanthanide tetrad effect.– Contrib. Mineral. Petrol., 123, 323–333. doi: 10.1007/s004100050159

BELAK, M., MIKNIĆ, M., KRUK, B., KASTMULLER, Ž. & KRUK, LJ. (2000): Bazalt- glinoviti peperiti: litofacijesni i kronostratigrafski prinos poznavanju vulkanita Budima kod Voćina [Basalt-clayey limstone peperites: Lithofacies and chronostratigraphic contribution to the knowledge of the volcanites of the Mt. Budim near Voćin – in Croatian, with an English abstract].− Zbornik radova, 2. Hrvatski geološki kongres, Institut za geološka istraživanja, 109‒113.

BELOUSOVA, E.A., WALTERS, S., GRIFFIN, W.L., O’REILLY, S.Y. & FISHER, N.I. (2002a): Igneous zircon: trace element composition as an indicator of source rock type.– Contrib. Mineral. Petrol., 143, 602–622. doi: 10.1007/s00410-002-0364-7

BELOUSOVA, E.A., GRIFFIN, W.L., O’REILLY, S.Y. & FISHER, N.I. (2002b): Apatite as an indicator mineral for mineral exploration: Trace-element compositions and their relationship to host rock type.– J. Geochem. Explor., 76, 45–69. doi: 10.1016/S0375-6742(02)00204-2

BERZA, T., CONSTANTINESCU, E. & VLAD, Ş.N. (1998): Upper Cretaceous magmatic series and associated mineralization in the Carpathian–Balkan Orogen.– Resour. Geol., 48, 291–306. doi: 10.2478/s13386-011-0023-8

BIŠEVAC, V., BALOGH, K., BALEN, D. & TIBLJAŠ, D. (2010): Alpine (Cretaceous) very low- to low-grade metamorphism recorded on the illite-muscovite-rich fraction of metasediments from South Tisia (eastern Mt Papuk, Croatia).– Geol. Carpath., 61, 469–481.

BOYNTON, W.V. (1984): Geochemistry of the rare earth elements: meteorite studies.– In: HENDERSON, P. (ed.): Rare earth element geochemistry. Elsevier, 63–114.

BREITER, K. & ŠKODA, R. (2017): Zircon and whole-rock Zr/Hf ratios as markers of the evolution of granitic magmas: Examples from the Teplice caldera (Czech Republic/Germany).− Mineral. Petrol., 111, 435−457. doi: 10.1007/s00710-017-0509-z

BUROV, E., GUILLOU-FROTTIER, L., D’ACREMONT, E., LE POURHIET, L. & CLOETINGH, S. (2007): Plume head–lithosphere interactions near intra-continental plate boundaries.– Tectonophys., 434, 15–38. doi: 10.1016/j.tecto.2007.01.002

CROATIAN GEOLOGICAL SURVEY (2009): Geological Map of the Republic of Croatia, 1:300.000 (Geološka karta Republike Hrvatske).– Croatian Geological Survey, Department of Geology, Zagreb (in Croatian).

CVETKOVIĆ, V., ŠARIĆ, K., GRUBIĆ, A., CVIJIĆ, R. & MILOŠEVIĆ, A. (2014): The Upper Cretaceous ophiolite of North Kozara – remnants of an anomalous mid-ocean ridge segment of the Neotethys?– Geol. Carpath., 65, 117–130. doi: 10.2478/geoca-2014-0008

DE LA ROCHE, H., LETERRIER, J., GRANDCLAUDE, P. & MARCHAL, M. (1980): A classification of volcanic and plutonic rocks using R1R2-diagram and major element analyses – its relationships with current nomenclature.– Chem. Geol., 29, 183–210. doi: 10.1016/0009-2541(80)90020-0

DICKINSON, W. & GEHRELS, G. (2003): U–Pb ages of detrital zircons from Permian and Jurassic eolian sandstones of the Colorado Plateau, USA: paleogeographic implications.− Sediment. Geol., 163, 29–66. doi: 10.1016/S0037-738(03)00158-1

EBY, G.N. (1990): The A-type granitoids: a review of their occurrence and chemical characteristics and speculations on their petrogenesis.– Lithos, 26, 115–134. doi:10.1016/0024-4937(90)90043-Z

EBY, G.N. (1992): Chemical subdivision of the A-type granitoids: petrogenetic and tectonic implications.– Geology, 20, 641–644.

ERDMANN, S., WODICKA, N., JACKSON, S.E. & CORRIGAN, D. (2013): Zircon textures and composition refractory recorders of magmatic volatile evolution?− Contrib. Mineral. Petr., 165, 45–71. doi: 10.1007/s00410-012-0791-z

FREZZOTTI, M.L., TECCE, F. & CASGALI, A. (2012): Raman spectroscopy for fluid inclusions analysis.– J. Geochem. Explor., 112, 1–12. doi: 10.1016/j.gexplo.2011.09.009

FROST, C.D. & FROST, B.R. (2011): On ferroan (A-type) granitoids: their compositional variability and modes of origin.– J. Petrol., 32, 39–53. doi: org/10.1093/petrology/egq070

FROST, B.R., BRANES, C.G., COLLINS, W.J., ARCULUS, R.J., ELLIS, D.J. & FROST, C.D. (2001): A geochemical classification for granitic rocks.– J. Petrol., 42, 2033–2048. doi: 10.1093/petrology/42.11.2033

FU, B., PAGE, F.Z., CAVOSIE, J.C., FOURNELLE, J., KITA, N.T., LACKEY, J.S., WILDE, S.A. & VALLEY, J.W. (2008): Ti-in-zircon thermometry: applications and limitations.− Contrib. Mineral. Petr., 156, 197–215. doi: 10.1007/s00410-008-0281-5

GERVASONI, F., KLEMME, S., ROCHA-JÚNIOR, E.R.V. & BERNDT, J. (2016): Zircon saturation in silicate melts: a new and improved model for aluminous and alkaline melts.– Contrib. Mineral. Petr., 171, 21. doi: 10.1007/s00410-016-1227-y

HARRIS, N.B.W., PEARCE, J.A. & TINDLE, A.G. (1986): Geochemical characteristics of collision- zone magmatism.– In: COWARD, M.P. & RIES, A.C. (eds): Collision Tectonics.– Geol. Soc. London Spec. Publ., 19, 67–81.

HARRISON, T.M. & WATSON, E.B. (1984): The behavior of apatite during crustal anatexis: Equilibrium and kinetic considerations.– Geochim. Cosmochim. Acta, 48, 1467–1477. doi: 10.1016/0016-7037(84)90403-4

HOSKIN, P.W.O. & SCHALTEGGER, U. (2003): The composition of zircon and igneous and metamorphic petrogenesis.– Rev. Mineral. Geochem., 53, 27–62. doi: 10.2113/0530027

HOSKIN, P.W.O., KINNY, P.D., WYBORN, D. & CHAPPELL, B.W. (2000): Identifying Accessory Mineral Saturation during Differentiation in Granitoid Magmas: an Integrated Approach,– J. Petrol., 41/9, 1365–1396. doi: 10.1093/petrology/41.9.1365

HORVÁTH, P., BALEN, B., FINGER, F., TOMLJENOVIĆ, B. & KRENN, E. (2010): Contrasting P-T-t paths from the basement of the Tisia Unit (Slavonian Mts., NE Croatia): application of quantitative phase diagrams and monazite age dating.– Lithos, 117, 269–282. doi: 10.1016/j.lithos.2010.03.004

HORVAT, M., KLÖTZLI, U., JAMIČIĆ, D., BUDA, G., KLÖTZLI. E. & HAUZENBERGER, CH. (2018): Geochronology of granitoids from Psunj and Papuk Mts., Croatia.– Geochronometria, 45/1, 198–210. doi: 10.1515/geochr-2015-099

HURAI V., HURAIOVÁ, M., SLOBODNÍK, M. & THOMAS R. (2015): Geofluids – Developments in Microthermometry, Spectroscopy, Thermodynamics, and Stable Isotopes.− Elsevier, Amsterdam, 489 p.

ILINCA, G., BERZA, T., IANCU, V. & SEGHEDI, A (2011): Field Trip Guidebook, The Late Cretaceous Magmatic and Metallogenetic Belt and the Alpine structures of the western South Carpathians. 3rd International Symposium on the Geology of the Black Sea Region, Bucharest, 1–10 October 2011, 117 p.

JAMIČIĆ, D. (1983): Strukturni sklop metamorfnih stijena Krndije i južnih padina Papuka [Structural fabric of the metamorphosed rocks of Mt. Krndija and the eastern part of Mt. Papuk – in Croatian, with an English summary].− Geol. vjesnik, 36, 51‒72.

JAMIČIĆ, D. (1988): Strukturni sklop slavonskih planina [Structural fabric of the Slavonian Mts. (northern Papuk, Psunj, Krndija) – in Croatian, with an English summary].− PhD Thesis, Faculty of Science, University of Zagreb, 152 p.

JAMIČIĆ, D. (1989): Osnovna geološka karta SFRJ 1:100000, list Daruvar L 33-95 [Basic Geological Map of SFRY 1:100000, Daruvar sheet – in Croatian].– Geološki zavod, Zagreb, Savezni geološki zavod, Beograd.

JAMIČIĆ, D. & BRKIĆ, M. (1986): Osnovna geološka karta SFRJ 1:100000, list Orahovica L 33-96 [Basic Geological Map of SFRY 1:100000, Orahovica sheet – in Croatian].– Geološki zavod, Zagreb, Savezni geološki zavod, Beograd.

JAMIČIĆ, D., BRKIĆ, M., CRNKO, J. & VRAGOVIĆ, M. (1987): Osnovna geološka karta SFRJ 1:100000. Tumač za list Orahovica L 33-96 [Basic Geological Map of SFRY 1:100000, Geology of the Orahovica sheet – in Croatian].− Geološki zavod, Zagreb, Savezni geološki zavod, Beograd, 72 p.

JAMIČIĆ, D., VRAGOVIĆ, M. & MATIČEC, D. (1989): Osnovna geološka karta SFRJ 1:100000. Tumač za list Daruvar L 33-95 [Basic Geological Map of SFRY 1:100000, Geology of the Daruvar sheet – in Croatian].− Geološki zavod, Zagreb, Savezni geološki zavod, Beograd, 55 p.

JANOUŠEK, V., FARROW, C.M. & ERBAN, V. (2006): Interpretation of whole-rock geochemical data in igneous geochemistry: introducing Geochemical Data Toolkit (GCDkit).– J. Petrol., 47, 1255–1259. doi: 10.1093/petrology/egl013

KEMPTON, P.D., HARMON, R.S., HAWKESWORTH, C.J. & MOORBATH, S. (1990): Petrology and geochemistry of lower crustal granulites from the Geronimo Volcanic Field, southeastern Arizona.– Geochim. Cosmochim. Acta, 54, 3401–3426. doi:10.1016/0016-7037(90)90294-U

KING, P.L., WHITE, A.J.R., CHAPPELL, B.W. & ALLEN, C.M. (1997): Characterization and origin of aluminous a-type granites from the Lachlan Fold Belt, Southeastern Australia.– J. Petrol., 38, 371–391. doi:10.1093/petroj/38.3.371

KIRKLAND, C.L., SMITHIES, R.H., TAYLOR, R.J.M., EVANS, N. & MCDONALD, B. (2015): Zircon Th/U ratios in magmatic environs.– Lithos, 212–215, 397–414. doi: 10.1016/j.lithos.2014.11.021

KOCH, F. (1919): Grundlinien der Geologie von West-Slavonien.– Glasnik hrv. prir. dr., 31/2, 217–236.

LUGOVIĆ, B. (1983): Efuzivne stijene sjeverozapadnog dijela Papuka. [Extrusive rocks from the NW part of Mt. Papuk (Croatia, Yugoslavia) – in Croatian, with an English summary].– Geol. vjesnik, 36, 131–156.

LUŽAR-OBERITER, B., MIKES, T., DUNKL, I., BABIĆ, LJ. & VON EYNATTEN, H. (2012): Provenance of Cretaceous synorogenic sediments from the NW Dinarides (Croatia).– Swiss J. Geosci., 105, 377–399. doi: 10.1007/s00015-012-0107-3

MCLENNAN, S.M. (1994): Rare earth element geochemistry and the “tetrad” effect.– Geochim. Cosmochim. Acta, 58, 2025–2033. doi:10.1016/0016-7037(94)90282-8

PACES, J.B. & MILLER, J.D. (1993): Precise U–Pb ages of Duluth Complex and related mafic intrusions, northeastern Minnesota: geochro nological insights into physical, petrogenetic, paleomagnetic and tectonomagmatic processes associated with the 1.1 Ga midcontinent rift system.– J. Geophys. Res., 98, 13997–14013. doi: 10.1029/93JB01159

PAMIĆ, J. (1987): Mladoalpinski alkalijsko-feldspatski graniti (aljaskiti) Požeške gore u Slavoniji [Young-Alpine alkali feldspar granites (alaskites) from Mt. Požeška Gora in Slavonia, northern Yugoslavia – in Croatian, with English summary].− Geologija, 30, 183–205.

PAMIĆ, J. (1991): Gornjokredne bazaltoidne i piroklastične stijene iz voćinske vulkanske mase na Papuku (Slavonija, sj. Hrvatska) [Upper Cretaceous basaltoid and pyroclastic rocks from the Voćin volcanic mass on the Papuk Mt. (Slavonija, Northern Croatia) – in Croatian, with an English summary].– Geol. vjesnik, 44, 161–172.

PAMIĆ, J. (1993): Eoalpine to Neoalpine magmatic and metamorphic processes in the northwestern Vardar Zone, the easternmost Periadriatic Zone and the southwestern Pannonian Basin.– Tectonophysics, 109, 273–307. doi: 10.1016/0040-1951(93)90135-7

PAMIĆ, J. (1997): Vulkanske stijene Savsko-dravskog međuriječja i Baranje (Hrvatska) [Volcanic rocks of the Sava-Drava interfluve and Baranja (Croatia) – in Croatian, with English summary].– Nafta, Zagreb, 192 p.

PAMIĆ, J. (2002): The Sava-Vardar Zone of the Dinarides and Hellenides versus the Vardar Ocean.– Eclogae Geol. Helv., 95, 99–113. doi: 10.5169/seals-168948

PAMIĆ, J. & INJUK, J. (1988): Alpinske granitoidne stijene Prosare u sjevernoj Bosni.– Zbor. ref. nauč. skupa “Minerali, stijene, izumrli i živi svijet BiH”, 93–103, Sarajevo.

PAMIĆ, J. & LANPHERE, M. (1991a): Hercynian granites and metamorphic rocks from the Papuk, Psunj, Krndija and the surrounding basement of the Pannonian Basin (Northern Croatia, Yugoslavia).– Geologija, 34, 81–253.

PAMIĆ, J. & LANPHERE, M. (1991b): A-type granites from the collisional area of the northernmost Dinarides and Pannonian Basin. Neues Jahrb. Mineral. Abh., 161, 215–236.

PAMIĆ, J., LANPHERE, M. & MCKEE, E. (1988): Radiometric ages of metamorphic and associated igneous rocks of the Slavonian Mountains in the southern part of the Pannonian basin.– Acta Geol., 18, 13–39.

PAMIĆ, J., INJUK, J. & JAKŠIĆ, M. (1988/1989): Prilog geokemijskom poznavanju gornjokredne bimodalne vulkanske asocijacije Požeške gore u Slavoniji (Sjeverna Hrvatska, Jugoslavija) [Some geochemical features of the Upper Cretaceous bimodal volcanic association from the Požeška Gore Mt. in Slavonija (northern Croatia, Yugoslavia) – in Croatian, with an English summary].− Geologija, 31–32, 415–435.

PATIÑO DOUCE, A.E. (1997): Generation of metaluminous A-type granites by lowpressure melting of calc-alkaline granitoids.– Geology, 25, 743–746. doi:10.1130/0091-7613

PICCOLI, P.M, & CANDELA, P.A. (1994): Apatite in felsic rocks: a model for the estimation of initial halogen concentrations in the Bishop Tuff (Long Valley) and Tuolumne Intrusive Suite (Sierra Nevada Batholith) magmas.– Am. J. Sci., 294, 92–135. doi: 10.2475/ajs.294.1.92

PICCOLI, P.M. & CANDELA, P.A. (2002): Apatite in Igneous Systems.– Rev. Mineral. Geochem., 48, 255–292. doi: 10.2138/rmg.2002.48.6

PEARCE, J.A. (1996): Sources and settings of granitic rocks.– Episodes, 19, 120–125. doi: 10.18814/epiiugs/1996/v19i4/005

PEARCE, J.A., HARRIS, N.B.W. & TINDLE, A.G. (1984): Trace element discrimination diagrams for the tectonic interpretation of ranitic rocks.– J. Petrol., 25, 956–981.

POLJAK, J. (1939): Izvještaj o geološkom snimanju lista Slatina-Voćin (1:25.000).– Godišnjak Geol. inst. Kr. Jug. 1938, 1, 89–92, Beograd (in Croatian).

PUPIN, J.P. (1980): Zircon and granite petrology.– Contrib. Mineral. Petr., 73, 207–220. doi: 10.1007/BF00381441

PUPIN, J.P. (2000): Granite genesis related to geodynamics from Hf-Y in zircon.– Trans. R. Soc. Edinburgh: Earth Sci., 91, 245–256. doi : 10.1017/S0263593300007410

PUPIN, J.P. & TURCO, G. (1972): Une typologie originale du zircon accessoire.– Bull. Soc. Fr. Minéral. Cristallogr., 95, 348–359.

SCHILLER, D. & FINGER, F. (2019): Application of Ti-in-zircon thermometry to granite studies: problems and possible solutions.– Contrib. Mineral. Petr., 174, 51. doi: 10.1007/s00410-019-1585-3

SCHMID, S.M., BERNOULLI, D., FÜGENSCHUH, B., MATENCO, L., SCHEFER, S., SCHUSTER, R., TISCHLER, M. & USTASZEWSKI, K. (2008): The Alps– Carpathians–Dinarides connection: a compilation of tectonic units.– Swiss J. Geosci., 101, 139–183. doi: 10.1007/s00015-008-1247-3

SCHMID, S.M., FÜGENSCHUH, B., KOUNOV, A., MAŢENCO, L., NIEVERGELT, P., OBERHÄNSLI, R., PLEUGER, J., SCHEFER, S., SCHUSTER, R., TOMLJENOVIĆ, B., USTASZEWSKI, K. & VAN HINSBERGEN, D.J.J. (2020). Tectonic units of the Alpine collision zone between Eastern Alps and western Turkey.– Gondwana Res., 78, 308–374. doi: 10.1016/

SHAULIS, B., LAPEN, T.J. & TOMS, A. (2010): Signal linearity of an extended range pulse counting detector: Applications to accurate and precise U-Pb dating of zircon by laser ablation quadrupole ICPMS.− Geochem. Geophys. Geosyst., 11, Q0AA11. doi: 10.1029/2010GC003198

SKJERLIE, K.P. & JOHANSON, A.D. (1993): Fluid-absent melting behavior of an F-rich tonalitic gneiss at mid-crustal pressures: implications for the generation of anorogenic granites.– J. Petrol., 34, 785–815. doi: 10.1093/petrology/34.4.785

SLÁMA, J., KOSLER, J., CONDON, D.J., CROWLEY, J.L., GERDES, A., HANCHAR, J.M., HORSTWOOD, M.S.A., MORRIS, G.A., NASDALA, L., NORBERG, N., SCHALTEGGER, U., SCHOENE, N., TUBRETT, M.N. & WHITEHOUSE, M.J. (2008): Plesovice zircon – a new natural reference material for U–Pb and Hf isotopic microanalysis.− Chem. Geol., 249, 1–35. doi: 10.1016/j.chemgeo.2007.11.005

SŁODCZYK, E., PIETRANIK, A., BREITKREUZ, C., FANNING, C., ANCZKIEWICZ, R., EHLING, B.-C. (2016): Rhyolite magma evolution recorded in isotope and trace element composition of zircon from Halle Volcanic Complex.– Lithos, 248‒251, 402‒417. doi: 10.1016/j.lithos.2016.01.029

SLOVENEC, D., BELAK, M., MIŠUR, I., ŠEGVIĆ, B. & SCHUSTER, R. (2020): The early Paleozoic cumulate gabbroic rocks from the southwest part of the Tisza Mega-Unit (Mt. Papuk, NE Croatia): evidence of a Gondwana suture zone.– Int. J. Earth. Sci. (Geol. Rundsch.), 109, 2209–2233. doi: 10.1007/s00531-020-01896-8

STARIJAŠ, B., GERDES, A., BALEN, D., TIBLJAŠ, D. & FINGER, F. (2010): The Moslavačka Gora crystalline massif in Croatia: a Cretaceous heat dome within remnant Ordovician granitoid crust.– Swiss. J. Geosci., 103, 61–82. doi: 10.1007/s00015-010-0007-3

STRECKEISEN, A. (1974): Classification and nomenclature of plutonic rocks.– Geol. Rundsch., 63, 773–786.

STRECKEISEN, A. (1978): IUGS Subcommission on the Systematics of Igneous Rocks: Classification and nomenclature of volcanic rocks, lamprophyres, carbonatites and melilitic rocks; recommendation and suggestions.– Neues Jb. Mineral Abh., 134, 1–14.

STUR, D. (1861/62): Die neogen tertiären Ablagerungen von West Slavonien.– Jahrb. Reichanst, 12, 285–299.

SUN, S.S. & MCDONOUGH, W.F. (1989): Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes.– In: SAUNDERS, A.D. & NORRY, M.J. (eds.): Magmatism in ocean basins.– Geol. Soc. Spec. Publ., 42, 313–345. doi: 10.1144/GSL.SP.1989.042.01.19

TAJDER, M. (1956): Albitski efuzivi okolice Voćina i njihova geneza [The albite volcanic rocks of the Voćin area and their origin – in Croatian, with an English summary].– Acta geol. 1 (Prir. istraž. JAZU), 27, 35–48.

TAJDER, M. (1960): Anortoklasni egirinski riolit iz potoka Rupnice kod Voćina [Anorthoclase- aegirine-rhyolite from Rupnica brook near Voćin – in Croatian, with an English summary].– Acta geol. 2 (Prir. istraž. JAZU), 29, 95–101.

USTASZEWSKI, K., SCHMID, S.M., LUGOVIĆ, B., SCHUSTER, R., SCHALTEGGER, U., BERNOULLI, D., HOTTINGER, L., KOUNOV, A., FÜGENSCHUH, B. & SCHEFER, S. (2009): Late Cretaceous intra-oceanic magmatism in the internal Dinarides (northern Bosnia and Herzegovina): implications for the collision of the Adriatic and European plates.– Lithos, 108, 106–125. doi: 10.1016/j.lithos.2008.09.010

USTASZEWSKI, K., KOUNOV, A., SCHMID, S.M., SCHALTEGGER, U., KRENN, E., FRANK, W. & FÜGENSCHUH, B. (2010): Evolution of the Adria–Europe plate boundary in the northern Dinarides: from continent–continent collision to back-arc extension.– Tectonics, 29, TC6017. doi: 10.1029/2010TC002668

WANG, X, GRIFFIN, W.L. & CHEN, J. (2010): Hf contents and Zr/Hf ratios in granitic zircons.− Geochem. J., 44, 65−72. doi: 10.2343/geochemj.1.0043

WATSON, E.B. & HARISSON, T.M. (1983): Zircon saturation revisited: temperature and composition effects in a variety of crustal magma types.– Earth Planet. Sci. Lett., 64, 295–304. doi: 10.1016/0012-821X(83)90211-X

WATSON, E.B., WARK, D.A. & THOMAS, J.B. (2006): Crystallization thermometers for zircon and rutile.– Contrib. Mineral. Petr., 151, 413–433. doi: 10.1007/s00410-006-0068-5

WHALEN, J.B., CURRIE, K.L. & CHAPPELL, B.W. (1987): A-type granites: geochemical characteristics, discrimination and petrogenesis.– Contrib. Mineral. Petr., 95, 407–419. doi: 10.1007/BF00402202

ZIMMERMAN, A., STEIN, H.J., HANNAH, J.L., KOŽELJ, D., BOGDANOV, K. & BERZA, T. (2008): Tectonic configuration of the Apuseni–Banat–Timok–Srednogorie belt, Balkans-South Carpathians, constrained by high precision RE–OS molybdenite ages.– Miner. Deposita, 43/1, 1–21. doi: 10.1007/s00126-007-0149-z