Trace elements in pyrite from the Čukaru Peki porphyry Cu–high-sulfidation deposit, Serbia: implications for ore evolution in a polyphase hydrothermal system

Main Article Content

Miloš Velojić
Viktor Bertrandsson Erlandsson
Frank Melcher
Peter Onuk
Rade Jelenković
Vladica Cvetković

Abstract

Čukaru Peki is a recently discovered porphyry- high-sulfidation Cu-Au deposit located 5km south of the mining town of Bor in east Serbia. Three styles of mineralization are distinguished in the Čukaru Peki system: a high-sulfidation type with massive sulfides (named the Upper zone), a porphyry type (named the Lower zone) and a transition type (between porphyries and massive sulfides). This study investigates the concentration and distribution of trace elements in pyrite from these three mineralization zones of Čukaru Peki. The high-sulfidation pyrite contains elevated concentrations of V, Mn, Ni, Cu, As, Mo, Ag, Cd, In, Sn, Sb, Au, Hg, Tl, Pb and Bi, compared to pyrite from the porphyry zone. The porphyry zone pyrite contains elevated concentrations of Co and Se. The sample from the transition zone contains concentrations between the two other zones, with the exception of the relative enrichment of Co and Ag. This research also aims to separate different stages of ore deposition. The porphyry stage contains several types of veins: quartz A veins, quartz B veins, pyrite D veins, magnetite veins, purple anhydrite veins, sulfide veins and orange anhydrite veins. The high sulfidation stage also formed in several stages: pyrite1, pyrite-enargite veins, pyrite-covellite veins, pyrite2 veins and calcite-anhydrite veins. There are distinct differences between various vein generations found within each zone, notable examples are the enrichment of Se in quartz B veins pyrite and Cu in sulfide veins, compared to other veins from porphyry zone veins and the enrichment of several trace elements (Cu, Mo, Ag, Cd, In, Sn, Sb, Au, Hg, Tl, Pb and Bi) in pyrite from the Py-cov veins in comparison to the other high-sulfidation veins. The trace element data also indicates a change in fluid compositions; the earlier fluids responsible for the porphyry zone mineralization showing a slightly more magmatic fluid signature (higher Co/Sb and Se/As values) and the later high-sulfidation fluids bearing a more typical epithermal trace element signature, which indicates cooling and diluting of fluids. Some of the porphyry zone pyrite crystals (from B-type veins and Purple anhydrite-veins) contain elevated concentrations of elements attributed to the high-sulfidation zone (e.g. Cu, Ag, Cd, In, Sn, Pb and Bi), which suggests that these veins were affected by later high-sulfidation fluids. 

Downloads

Download data is not yet available.

Article Details

Section
Original Scientific Papers

References

BANJEŠEVIĆ, M. & LARGE, D. (2014): Geology and mineralization of the new copper and gold discovery south of Bor Timok magmatic complex.– In: Proceedings of the XVI Serbian Geological Congress, Serbian Geological Society, Donji Milanovac, 2014, 739–741.

BANJEŠEVIĆ, M., CVETKOVIĆ, V., VON QUADT, A., LJUBOVIĆ OBRADOVIĆ, D., VASIĆ, N., PAČEVSKI, A. & PEYTCHEVA, I. (2019): New Constraints on the Main Mineralization Event Inferred from the Latest Discoveries in the Bor Metallogenetic Zone (BMZ, East Serbia).– Minerals, 9/11, 672. https://doi.org/10.3390/min9110672

BOGDANOV, K., & KUNCHEVA, J. (2017): Epithermal gold mineralization in the Krassen deposit, Panagyurishte ore district, Bulgaria.– Geologica Macedonica, 31/2, 107–116.

CAMPBELL, F.A. & ETHIER, V.G. (1984): Nickel and cobalt in pyrrhotite and pyrite from the Faro and Sullivan ore bodies.– The Canadian Mineralogist, 22, 503–506.

CHOUINARD, A., PAQUETTE, J. & WILLIAMS-JONES, A.E. (2005): Crystallographic controls on trace-element incorporation in auriferous pyrite from the Pascua epithermal high-sulfidation deposit, Chile–Argentina.– The Canadian Mineralogist, 43/3, 951–963. doi: 10.2113/gscanmin.43.3.951

CIOACĂ, M.E., MUNTEANU, M., QI, L. & COSTIN, G. (2014): Trace element concentrations in porphyry copper deposits from Metaliferi Mountains, Romania: A reconnaissance study.– Ore Geology Reviews, 63, 22–39. doi: 10.1016/j.oregeorev.2014.04.016

COOK, N.J., CIOBANU, C.L., DANYUSHEVSKY, L.V. & GILBERT, S. (2011): Minor and trace elements in bornite and associated Cu–(Fe)-sulfides: A LA-ICP-MS study Bornite mineral chemistry.– Geochimica et Cosmochimica Acta, 75/21, 6473–6496. doi: 10.1016/j.gca.2011.08.021

DEDITIUS, A.P., REICH, M., KESLER, S.E., UTSUNOMIYA, S., CHRYSSOULIS, S.L., WALSHE, J. & EWING, R.C. (2014): The coupled geochemistry of Au and As in pyrite from hydrothermal ore deposits.– Geochimica et Cosmochimica Acta, 140, 644–670. doi: 10.1016/j.gca.2014.05.045

DROVENIK, M. (1961): Geological-petrological study of the Bor mine area (eastern Serbia) (in Slovenian).– Unpubl. PhD Theses, Ljubljana, 344 p.

DURAN, C.J., DUBÉ-LOUBERT, H., PAGÉ, P., BARNES, S.-J., ROY, M., SAVARD, D. CAVE, B.J., ARGUIN, J.-P. & MANSUR, E.T. (2019): Applications of trace element chemistry of pyrite and chalcopyrite in glacial sediments to mineral exploration targeting: Example from the Churchill Province, northern Quebec,– Canada Journal of Geochemical Exploration, 196, 105–130. doi: 10.1016/j.gexplo.2018.10.006

FRANCHINI, M., MCFARLANE, C., MAYDAGÁN, L., REICH, M., LENTZ, D.R., MEINERT, L. & BOUHIER, V. (2015): Trace metals in pyrite and marcasite from the Agua Rica porphyry-high sulfidation epithermal deposit, Catamarca, Argentina: Textural features and metal zoning at the porphyry to epithermal transition.– Ore Geology Reviews, 66, 366–387. doi: 10.1016/j.oregeorev.2014.10.022

FÜGENSCHUH, B. & SCHMID, S.M. (2005): Age and significance of core complex formation in a very curved orogen: Evidence from fission track studies in the South Carpathians (Romania).– Tectonophysics, 404/1–2, 33–53. doi: 10.1016/j.tecto.2005.03.019

GALLHOFER, D., QUADT, A. V., PEYTCHEVA, I., SCHMID, S. M., & HEINRICH, C.A. (2015): Tectonic, magmatic, and metallogenic evolution of the Late Cretaceous arc in the Carpathian-Balkan orogen.– Tectonics, 34/9, 1813–1836. doi: 10.1002/2015TC003834

GREGORY, M.J., LANG, J.R., GILBERT, S. & HOAL, K.O. (2013): Geometallurgy of the Pebble porphyry copper-gold-molybdenum deposit, Alaska: Implications for gold distribution and paragenesis.– Economic Geology, 108/3, 463–482. doi: 10.2113/econgeo.108.3.463

INGEBRITSEN, S.E. & APPOLD, M.S. (2012): The physical hydrogeology of ore deposits.– Economic Geology, 107/4, 559–584. doi: 10.2113/econgeo.107.4.559

JAKUBEC, J., MACSPORRAN, G., DUINKER, P., PITTUCK, M., MANOLJOVIĆ, P., SUCHARDA, M., SAMOUKOVIĆ, M., BUNYARD, C. & ARSENEAU, G. (2018): NI 43-101 Technical Report-Timok Copper-Gold Project, Serbia: Upper Zone Prefeasibility Study and Resource Estimate for the Lower Zone.– Nevsun Resources Ltd, 1–427.

JANKOVIĆ, S. (1990): The ore deposits of Serbia (Yugoslavia): Regional metallogenic setting, enviroments of deposition and types (in Serbian, with english summary).– Faculty of Mining and Geology, Belgrade, 760 p.

JANKOVIĆ, S., JELENKOVIĆ, R. & КOŽELJ, D. (2002): The Bor copper and gold mine.– QWЕRТY, Bor, 298 p.

JELENKOVIĆ, R., MILOVANOVIĆ, D., KOŽELJ, D. & BANJEŠEVIĆ, M. (2016): The mineral resources of the Bor metallogenic zone: a review.– Geologia Croatica, 69/1, 143–155. doi: 10.4154/GC.2016.11

JOHN, D.A., AYUSO, R.A., BARTON, M.D., BLAKELY, R.J., BODNAR, R.J., DILLES, J.H., GRAY, F., GRAYBEAL, F.T., MARS, J.L., McPHEE, D., SEAL, R.R. & TAYLOR, R.D. (2010): Porphyry copper deposit model.– Scientific investigations report. doi: 10.3133/sir20105070B

KEITH, M., SMITH, D.J., JENKIN, G.R.T., HOLWELL, D.A. & DYE, M.D. (2018): A review of Te and Se systematics in hydrothermal pyrite from precious metal deposits: Insights into ore-forming processes.– Ore Geology Reviews, 96, 269–282. doi: 10.1016/j.oregeorev.2017.07.023

KESLER, S.E., CHRYSSOULIS, S.L. & SIMON, G. (2002): Gold in porphyry copper deposits: its abundance and fate.– Ore Geology Reviews, 21/1–2, 103–124. doi: 10.1016/S0169-1368(02)00084-7

KNAAK, M., MÁRTON, I., TOSDAL, R. M., VAN DER TOORN, J., DAVIDOVIC, D., STRMBANOVIC, I. & HASSON, S. (2016): Geologic setting and tectonic evolution of porphyry Cu-Au, polymetallic replacement, and sedimentary rock-hosted au deposits in the northwestern area of the Timok magmatic complex, Serbia.– Serbia, Society of Economic Geologists, Special Publication, 19, 1–28.

KOLB, M., VON QUADT, A., PEYTCHEVA, I., HEINRICH, C.A., FOWLER, S.J. & CVETKOVIĆ, V. (2013): Adakite-like and normal arc magmas: distinct fractionation paths in the East Serbian segment of the Balkan–Carpathian arc.– Journal of Petrology, 54/3, 421–451. doi: 10.1093/petrology/egs072

MAYDAGÁN, L., FRANCHINI, M., LENTZ, D., PONS, J. & MCFARLANE, C. (2013): Sulfide composition and isotopic signature of the Altar Cu-Au deposit, Argentina: Constraints on the evolution of the porphyry-epithermal system.– The Canadian Mineralogist, 51/6, 813–840. doi: 10.3749/canmin.51.6.813

MIŠKOVIĆ, V. (1989): The genesis of copper deposit “Novo Okno” and its metallogenic corellation with ore clasts in Bor region- eastern Serbia (in Serbian).– Unpubl. PhD Theses, Faculty of Mining and Geology, Belgrade, 189 p.

NEUBAUER, F. (2002): Contrasting Late Cretaceous with Neogene ore provinces in the Alpine-Balkan-Carpathian-Dinaride collision belt.– Geological Society London Special Publication, 204, 90–100. doi: 10.1144/GSL.SP.2002.204.01.06

ONUK, P., MELCHER, F., MERTZ‐KRAUS, R., GÄBLER, H.E. & GOLDMANN, S. (2017): Development of a matrix‐matched sphalerite reference material (MULZnS‐ 1) for calibration of in situ trace element measurements by laser ablation‐inductively coupled plasma‐mass spectrometry.– Geostandards and Geoanalytical Research, 41/2, 263–272. doi: 10.1111/ggr.12154

PAČEVSKI, A., LIBOWITZKY, E., ŽIVKOVIĆ, P., DIMITRIJEVIĆ, R. & CVETKOVIĆ, L. (2008): Copper-bearing pyrite from the Čoka Marin polymetallic deposit, Serbia: Mineral inclusions or true solid-solution?.– The Canadian Mineralogist, 46/1, 249–261. doi: 10.3749/canmin.46.1.249

PAČEVSKI, A., CVETKOVIĆ, V., ŠARIĆ, K., BANJEŠEVĆ, M., HOEFER, H.E. & KREMENOVIĆ, A. (2016): Manganese mineralization in andesites of Brestovačka Banja, Serbia: evidence of sea-floor exhalations in the Timok Magmatic Complex.- Mineralogy and Petrology, 110/4, 491. doi: 10.1007/s00710-016-0425-7

PASS, H.E. (2010): Breccia-hosted chemical and mineralogical zonation patterns of the Northeast Zone, Mt. Polley Cu-Ag-Au alkalic porphyry deposit, British Columbia, Canada.– PhD thesis, University of Tasmania.

PATON, C., HELLSTROM, J., PAUL, B., WOODHEAD, J. & HERGT, J. (2011): Iolite: Freeware for the visualisation and processing of mass spectrometric data.– Journal of Analytical Atomic Spectrometry. doi:10.1039/c1ja10172b

PAVIĆEVIĆ, M., RAKIĆ, S., GRŽETIĆ, I. & GOLIJANIN, D. (1981): A study of distribution of precious, rare and trace elements in the ore body “Tilva Roš” in Bor mine (in Serbian).– Faculty of Mining and Geology ULEMA, Belgrade, 102 p.

PAVIĆEVIĆ, M., RAKIĆ, S., GRŽETIĆ, I. & GOLIJANIN, D. (1985): A study of distribution of precious, rare and trace elements in the Borska reka ore deposit (in Serbian).– Faculty of Mining and Geology ULEMA, Belgrade, 112 p.

POKROVSKI, G.S., KOKH, M.A., PROUX, O., HAZEMANN, J.L., BAZARKINA, E.F., TESTEMALE, D., ... & THIBAUT, M. (2019): The nature and partitioning of invisible gold in the pyrite-fluid system.– Ore Geology Reviews, 109, 545–563. doi: 10.1016/j.oregeorev.2019.04.024

REICH, M., DEDITIUS, A., CHRYSSOULIS, S., LI, J. W., MA, C.Q., PARADA, M.A., ... & MITTERMAYR, F. (2013): Pyrite as a record of hydrothermal fluid evolution in a porphyry copper system: A SIMS/EMPA trace element study.– Geochimica et Cosmochimica Acta, 104, 42–62. doi: 10.1016/j.gca.2012.11.006

SILLITOE, R.H. (2010): Porphyry copper systems.– Economic geology, 105/1, 3–41. doi: 10.2113/gsecongeo.105.1.3

SIMMONS, S.F. (2005): Geological characteristics of epithermal precious and base metal deposits.– In: 100th Anniversary Volume, 485–522. doi: 10.5382/AV100.16

SYKORA, S., COOKE, D. R., MEFFRE, S., STEPHANOV, A. S., GARDNER, K., SCOTT, R., ... & HARRIS, A.C. (2018): Evolution of pyrite trace element compositions from porphyry-style and epithermal conditions at the Lihir gold deposit: Implications for ore genesis and mineral processing.– Economic Geology, 113/1, 193–208. doi: 10.5382/econgeo.2018.4548

VAKANJAC, B. (2000): A comparative study of typical paragenetic relations in different ore of Bor metallogenic zone (in Serbian)– Doctoral dissertation, Faculty of Mining and Geology, Belgrade, 314 p.

VELOJIĆ, M. & BERTRANDSSON ERLANDSSON, V. (2019): Trace elements in different veins by LA-ICP-MS in Chukaru Peki high sulfidation deposit, Serbia.– In: 1st International Student Conference on Geochemistry and Mineral Deposits, Prague.

VELOJIĆ, M., JELENKOVIC, R. & CVETKOVIC, V. (2020): Fluid Evolution of the Čukaru Peki Cu-Au Porphyry System (East Serbia) inferred from a fluid inclusion study.– Geologia Croatica, 73/3, 197–209. doi: 10.4154/gc.2020.14

VON QUADT, A. PEYTCHEVA, I., CVETKOVIĆ, V. BANJEŠEVIĆ, M. & KOŽELJ, D. (2002): Geochronology, geochemistry and isotope tracing of the Cretaceous magmatism of East-Serbia as part of the Apuseni-Timok-Srednogorie metallogenic belt.– Geologica Carpathica, 53, 175–177.

WILSON, S.A., RIDLEY, W.I. & KOENIG, A.E. (2002): Development of sulfide calibration standards for the laser ablation inductively-coupled plasma mass spectrometry technique.– International Journal of Analytical Atomic Spectrometry, 17, 406–409. doi: 10.1039/B108787H

ZWAHLEN, C., CIOLDI, S., WAGNER, T., REY, R. & HEINRICH, C. (2014): The porphyry Cu-(Mo-Au) deposit at Altar (Argentina): Tracing gold distribution by vein mapping and LA-ICP-MS mineral analysis.– Economic Geology, 109/5, 1341–1358. doi: 10.2113/econgeo.109.5.1341