Preliminary chemical and mineralogical characterization of tailings from base metal sulfide deposits in Serbia and North Macedonia

Main Article Content

Timotheus Martin Christoph Steiner
Viktor Bertrandsson Erlandsson
Robert Šajn
Frank Melcher

Abstract

Tailings of old mines often contain metals, which were not of economic interest or could not be recovered with the existing technology at the time of active mining. This is especially true for metals that often occur as by-products in Cu-Pb-Zn-(Ag-Au) ores as Sb, Mo, Ge, and In. A fundamental characterization of some tailings is presented in terms of their mineralogy and content of valuable metals which could be extracted to finance a possible remediation and improve the supply of the EU with critical metals. Tailings from active and abandoned mines in Serbia (Bor, porphyry Cu/Au; Krivelj, porphyry Cu/Au; Blagodat, hydrothermal Pb-Zn; Lece, epithermal Au; Rudnik, hydrothermal/skarn Pb-Zn) and North Macedonia (Sasa, Pb-Zn; Probištip, Pb-Zn; Bučim, porphyry Cu; Lojane, fault-bound vein-type low-temperature As, Sb, Cr at the contact of rhyolite and serpentinite) were studied. Analysis for major and trace elements used a multi-method approach (lithium borate fusion and ICP-MS/OES analysis, gravimetric analysis, instrumental neutron activation analysis, total digestion ICP-OES,  infrared spectroscopy) with mineral identification by scanning electron microscopy. Concentrations of the major commodity elements (Cu, Pb, Zn, Au, Ag) varies within several orders of magnitude depending on mineralogy and ore type. Critical metals (Co, Ga, Ge, Sb) contents are low with some exceptions. Some tailings contain moderate to elevated potentially toxic element levels (As, Cd, Pb, Tl). For the sample from Probištip which yielded the highest valuable metal concentrations (>5000 ppm Pb, 4020 ppm Zn), a heavy mineral concentrate of the sand size fraction (0.06 mm to 0.5 mm) was produced and analyzed by SEM and LA-ICP-MS for additional rare phases and trace elements. In all tailings studied, additional milling would be needed to separate ore from gangue minerals. Increasing metal prices might facilitate feasibility studies for some of the localities in the  future, despite the limited quantitative information about the characterized tailings.

Downloads

Download data is not yet available.

Article Details

Section
Original Scientific Papers

References

ASCH, K. (2005): The 1 : 5 Million International Geological Map of Europe and Adjacent Areas - IGME 5000. BGR, Hannover.

CASSARD, D., BERTRAND, G., BILLA, M., SERRANO, J.-J., TOURLIÈRE, B., ANGEL, J.-M. & GAÁL, G. (2015): ProMine mineral databases: new tools to assess primary and secondary mineral resources in Europe.– In: 3D, 4D and Predictive Modelling of Major Mineral Belts in Europe. Springer, 9–58. doi: 10.1007/978-3-319-17428-0_2

CASSARD, D., LEISTEL, J.-M., LIPS, A.L.W. & STEIN, G. (2008): Metallogenic map of Central and Southeastern Europe: an extract from GIS Central Europe | European Minerals Knowledge Data Platform (EU-MKDP). BRGM.

COOK, N.J., CIOBANU, C.L., PRING, A., SKINNER, W., SHIMIZU, M., DANYUSHEVSKY, L., SAINI-EIDUKAT, B. & MELCHER, F. (2009): Trace and minor elements in sphalerite: A LA-ICPMS study.– Geochimica et Cosmochimica Acta, 73, 4761–4791. doi: 10.1016/j.gca.2009.05.045

DJOKIĆ, B.V., JOVIĆ, V., JOVANOVIĆ, M., ĆIRIĆ, A. & JOVANOVIĆ, D. (2012): Geochemical behaviour of some heavy metals of the Grot flotation tailing, Southeast Serbia.– Environ. Earth. Sci., 66, 933–939. doi: 10.1007/s12665-011-1303-6.

GEOLOGICAL SURVEY OF SLOVENIA (2022): West Balkan Mineral Register of Secondary Raw Materials. https://reseerve.eu/results/west-balkan-mineral-registerof- secondary-raw-materials (Last accessed on 20.01.2022.)

JANKOVIĆ, S. (1977): The copper deposits and geotectonic setting of the Thethyan Eurasian Metallogenic Belt.– Mineralium Deposita, 12, 37–47.

JELENKOVIĆ, R., KOSTIĆ, A., ŽIVOTIĆ, D. & ERCEGOVAC, M. (2008): Mineral resources of Serbia.– Geologica Carpathica, 59, 345–361.

JELENKOVIĆ, R., MILOVANOVIĆ, D., KOŽELJ, D. & BANJEŠEVIĆ, M. (2016): The mineral resources of the Bor metallogenic zone: a review.– Geologia Croatica, 69, 143–155. doi: 10.4154/GC.2016.11

KOLITSCH, U., DJORDJEVIC, T., TASEV, G., SERAFIMOVSKI, T., BOEV, I. & BOEV, B. (2018): Supergene mineralogy of the Lojane Sb-As-Cr deposit, Republic of Macedonia: tracing the mobilization of toxic metals.– Geologica Macedonica, 32, 95–117.

LOTTERMOSER, B. (2010): Mine Wastes: Berlin.– Springer, Heidelberg, 400 p. doi: 10.1007/978-3-642-12419-8

LØVIK, A.N., HAGELÜKEN, C. & WÄGER, P. (2018): Improving supply security of critical metals: Current developments and research in the EU.– Sustainable Materials and Technologies, 15, 9–18. doi: 10.1016/j.susmat.2018.01.003

ONUK, P., MELCHER, F., MERTZ-KRAUS, R., GÄBLER, H.-E. & GOLDMANN, S. (2017): Development of a matrix-matched sphalerite reference material (MULZnS-1) for calibration of in situ trace element measurements by laser ablation-inductively coupled plasma-mass spectrometry.– Geostandards and Geoanalytical Research, 41, 263–272. doi: 10.1111/ggr.12154

PATON, C., HELLSTROM, J., PAUL, B., WOODHEAD, J. & HERGT, J. (2011): Iolite: Freeware for the visualisation and processing of mass spectrometric data.– Journal of Analytical Atomic Spectrometry, 26, 2508–2518. doi: 10.1039/c1ja10172b

SERAFIMOVSKI, T., CIFLIGANEC, V. & BOEV, B. (1996): Genetic model of the Buchim porphyry copper deposit, Republic of Macedonia.– In: Proceedings of the annual meeting. University of Mining and Geology-St.” Ivan Rilski”, Sofia, 63–74.

SERAFIMOVSKI, T., DOLENEC, T. & TASEV, G. (2006): New data concerning the major ore minerals and sulphosalts from the Pb-Zn Zletovo Mine, Macedonia.– RMZ-Materials and Geoenvironment, 52, 535–548.

SPASOVSKI, O. & SPASOVSKI, D. (2013): Geochemical Characteristics and Significance of Tailing Dump from Polymetallic Pb-Zn Deposit Zletovo (Republic of Macedonia).– In: 5th Jubilee Balkan Mining Congress. ELEM Macedonia.

STOJAVONIĆ, J., TOSOVIC, R., PAČEVSKI, A., RADOSAVLJEVIĆ, S., KAŠIĆ, V. & VUKOVIĆ, N. (2018): A review of the Pb-Zn-Cu-Ag-Bi-W polymetallic ore from the Rudnik orefield, Central Serbia.– Geoloski anali Balkanskog poluostrva, 79. doi: 10.2298/GABP1879047S

STOJAVONIĆ, J.N., RADOSAVLJEVIĆ, S.A., KARANOVIĆ, L. & CVETKOVIĆ, L. (2006:) Mineralogy of W–Pb–Bi ores from Rudnik Mt., Serbia.– Neues Jahrbuch für Mineralogie-Abhandlungen: Journal of Mineralogy and Geochemistry, 182, 299–306.

STOJAVONIĆ, J.N., RADOSAVLJEVIĆ, S.A., TOŠOVIĆ, R.D., PAČEVSKI, A.M., RADOSAVLJEVIĆ-MIHAJLOVIĆ, A.S., KAŠIĆ, V.D. & VUKOVIĆ, N.S. (2018): A review of the Pb-Zn-Cu-Ag-Bi-W polymetallic ore from the Rudnik orefield, Central Serbia.– Geoloski anali Balkanskoga poluostrva, 79, 47–69.

STRIMIĆ PALINKAS, S., TASEV, G., SERAFIMOVSKI, T., PALINKAS, L., ŠMAJGL, D. & PELTEKOVSKI, Z. (2013): Ore-fluid evolution at the Sasa Pb-Zn skarn deposit, Republic of Macedonia.– In: AusIMM New Zealand Branch Annual Conference 2013. Australasian Institute of Mining and Metallurgy, 487–494.

TASEV, G., SERAFIMOVSKI, T., DJORDJEVIC, T. & BOEV, B. (2017): Soil and groundwater contamination around the Lojane As-Sb mine, Republic of Macedonia.– In: 17th International Multidisciplinary Scientific GeoConference SGEM 2017, 17, 809–817.

TUFAR, W. & ŠTRUCL, I. (1984): The Sasa Lead-Zinc Deposit (Macedonia/Yugoslavia) and its Position in the Serbian-Macedonian Ore Province.– In: WAUSCHKUHN, A., KLUTH, C. & ZIMMERMANN, R.A. (eds.): Syngenesis and Epigenesis in the Formation of Mineral Deposits. Springer, Berlin Heidelberg, 412–421.

UIBLEIN, S.H. (2021): Mineralogy and geochemistry of the major mining waste dump of the former As-Sb-Cr mine in Lojane, North Macedonia.– Mitteilungen der Österreichischen Mineralogischen Gesellschaft, 167.

VELOJIĆ, M., PRELEVIĆ, D. & JELENKOVIĆ, R. (2018): The origin of lead and sulphur in Tulare ore field, Lece magmatic complex, SE Serbia.– Geoloski anali Balkanskoga poluostrva, 79/2, 19–28. doi: 10.2298/GABP1802019V

WILSON, S.A., RIDLEY, W.I. & KOENIG, A.E. (2002): Development of sulfide calibration standards for the laser ablation inductively-coupled plasma mass spectrometry technique.– Journal of Analytical and Atomic Spectrometry, 17, 406–409. doi: 10.1039/B108787H