Žune Ba-F epithermal deposit Part 1: Mineralogical and geochemical characteristics

Main Article Content

Sibila Borojević Šoštarić
https://orcid.org/0000-0003-1861-2470
Martin Roglić
Aleksej Milošević
Tomislav Brenko

Abstract

The Žune Ba-F epithermal deposit is situated in the Ljubija ore field (NW Bosnia and Herzegovina), within Upper Palaeozoic dolostone. A typical ESE-WNW Variscan vergency fault zone separates the dolostone from Lower Triassic schists and sandstones. External and internal pseudo-bedding, with massive, homogenous structure and partial limonitization characterizes the dolostone. Its geochemical composition exhibits low SiO2 (1.33 – 2.06 mass. %), Al2O3 (0.27 –0.38 mass. %), BaO (0.02 – 0.83 mass. %), ƩREE (5.7 – 9.4 ppm), Sr (61.7 – 120.4 ppm), Sm (0.3 – 2.2 ppm) and Eu (0.1 – 0.6 ppm), while having high CaO (30.24 – 32.38 mass. %), MgO (16.47 – 17.35  mass. %) and LOI (44.6 – 45.58 mass. %). The dolostone-mineralization contact zone consists of metasomatically recrystallised host dolostone with quartz and pyrite, where the presence of accessory tremolite, magnesiochloritoid and pyknite indicates peak formation conditions in the pre-mineralization phase with temperatures above 300°C. Two ore types are described: (i) Ba-F vein-type mineralization composed of barite – fluorite ± quartz, and (ii) hydrothermal breccia composed of coarse-grained fluorite and barite, surrounding fragments of dolostone, and occupying ≈20 % of the deposit. Mineralized samples show slightly elevated SiO2 (2.20 – 5.53 mass. %) and Al2O3 (0.24 – 0.74 mass. %), low MgO (below 0.02 mass. %) and LOI (0.3 – 3.1 %), with high BaO (up to 50.74 mass. %), CaO (up to 66.03 mass. %), ƩREE (20 – 166 ppm), Sr (exceeding 1 mass. %), Sm (up to 118 ppm) and Eu (up to 44 ppm). Elevated Sr can be correlated to other barite epigenetic hydrothermal deposits in the Dinarides, interpreted as BaSr substitution in the barite crystal lattice. Fluorite-rich samples are characterized by Y (0.6 –49.2 ppm) and HREE enrichment, accompanied by depletion of LREE. The Ba-F deposit Žune, having variable REE concentration and a negative cerium and ytterbium anomaly corresponds geochemically to world-class fluorite deposits associated with carbonate sedimentary rocks.

Downloads

Download data is not yet available.

Article Details

Section
Original Scientific Papers
Author Biography

Sibila Borojević Šoštarić, Faculty of Mining Geology and Petroleum Engineering, University of Zagreb, Croatia

Department of Mineralogy, Petrology and Mineral Recourses

References

ANDERS, E. & GREVESSE, N. (1989): Abundances of the elements: meteoric and solar.– Geochim. Cosmochim. Ac., 53/1, 197–214. doi: 10.1016/0016-7037(89)90286-X

ARNASON, J.G., BIRD, D.K. & LIOU, J.G. (1993): Variables Controlling Epidote Composition in Hydrothermal and Low-Pressure Regional Metamorphic Rocks.– Abh. Geol. Bundesanst. Wien, 49, 17–25.

BAU, M. & MÖLLER, P. (1992): Rare earth element fractionation in metamorphogenic hydrothermal calcite, magnesite and siderite.– Miner. Petrol., 45/3-4, 231–246. doi: 10.1007/bf01163114

BAU, M. & DULSKI, P. (1995): Comparative study of yttrium and rare-earth Element behaviours in fluorine rich hydrothermal fluids.– Contrib. Mineral. Petr., 119/2–3, 213–223. doi: 10.1007/BF00307282

BEJAOUI, J., BOUHLEL, S. & BARCA, D. (2013): Geology, Mineralogy and Fluid Inclusions Investigation of the Fluorite Deposit at Jebel Kohol, northeastern Tunisia.– Period. Mineral., 82/2, 217–237. doi: 10.2451/2013PM0013

BIRD, D.K. & SPIELER, A.R. (2004): Epidote in Geothermal Systems.– Rev. Mineral. Geochem., 56/1, 235–300. doi: 10.2138/gsrmg.56.1.235

BOROJEVIĆ ŠOŠTARIĆ, S., MARKELJ, A., JAŠAREVIĆ, E. & HAINDL, A. (2021): Geological potential of antimony, bauxite, fluorite, and magnesite of the Central Dinarides (Bosnia and Herzegovina): an exploration and exploitation perspective.– Geol. Croat., 75/2, 269–287. doi: 10.4154/gc.2022.16

BUCHER, K. & FREY, M. (2002): Petrogenesis of Metamorphic Rocks.– Springer-Verlag, Berlin, 341 p. doi: 10.1007/978-3-662-04914-3

COOK, S.J. & BOWMAN, J.R. (2000): Mineralogical Evidence for Fluid–Rock Interaction Accompanying Prograde Contact Metamorphism of Siliceous Dolomites: Alta Stock Aureole, Utah, USA.– J. Petrol., 41/6, 739–757. doi: 10.1093/petrology/41.6.739

DEER, W.A., HOWIE, R.A. & ZUSSMAN, J. (1997): Rock-forming minerals.– The Geological Society of London, London, 936 p.

EGGERT, R.G. & KERRICK, D.M. (1981): Metamorphic equilibria in the siliceous dolomite system: 6 kbar experimental data and geologic implications.– Geochim. Cosmochim. Ac., 45/7, 1039–1049. doi: 10.1016/0016-7037(81)90130-7

GHENT, E.D, STOUT, M.Z. & FERRI, F. (1989): Chloritoid-paragonite-phyrophyllite and stilpnomelane bearing rocks near Blackwater Mountain, western Rocky Mountains, British Columbia.– Can. Mineral., 27/1, 59–66.

GRUBIĆ A., PROTIĆ, L.J., FILIPOVIĆ, I. & JOVANOVIĆ, D. (2000): New data on the Palaeozoic of the Sana-Una Area.– In: Proceedings of the International Symposium of the Dinarides and the Vardar Zone. Acad. Sci. Art. Rep. Serb., Dept. Natur. Math. and Tech. Sci. I., Banja Luka, 49–54.

GRUBIĆ, A. & PROTIĆ, LJ. (2003): Studija strukturnih i genetskih karakteristika Tomašičkog rudnog polja [The study of structural and genetical characteristics of Tomašica ore field – in Serbian].– In: GRUBIĆ, A. & CVIJIĆ, R. (eds.): Novi prilozi za geologiju i metalogeniju rudnika gvožđa “Ljubija” [New Contribution to the Geology and Metallogeny of the Ljubija Iron Ore Mine – in Serbian]. Institute of Mining Prijedor and Mines of Iron ore “Ljubija” Prijedor, Prijedor, 63–134.

GRUBIĆ, A., CVIJIĆ, R., MILOŠEVIĆ, A. & ČELEBIĆ, M. (2015): Importance of olistostrome member for metallogeny of Ljubija iron ore deposits.– Archives for Technical Sciences, 13/1, 1–8. doi: 10.7251/afts.2015.0713.001G

HAJALILOU, B., VUSUQ, B. & MOAYED, M. (2014): REE Geochemistry of Precambrian Shale-Hosted Barite-Galena Mineralization, a Case Study from NW Iran.– Iranian Journal of Crystallography and Mineralogy, 22/2, 39–48.

JANOUŠEK, V., FARROW, C.M. & ERBAN, V. (2006): Interpretation of whole-rock geochemical data in igneous geochemistry: introducing Geochemical Data Toolkit (GCDkit).– J. Petrol., 47/6, 1255–1259. doi: 10.1093/petrology/egl013

JEREMIĆ, M. (1958): Baritno-fluoritno ležište Žune kod Ljubije [Barite-flourite deposit Žune-Dolinac near Ljubija – in Serbian].– Rudarsko-metalurški zbornik, 4, Ljubljana.

JURIĆ, M. (1971): Geologija područja Sanskog paleozoika u sjeverozapadnoj Bosni [Geology of the Sana Palaeozoic area in NW Bosnia – in Croatian].– Geološki glasnik XI, Sarajevo, 146 p.

JURKOVIĆ, I., GARAŠIĆ, V. & HRVATOVIĆ, H. (2010): Geochemical characteristics of barite occurrences in the Palaeozoic complex of South-eastern Bosnia and their relationship to the barite deposits of the Mid-Bosnian Schist Mountains.– Geol. Croat., 63/2, 241–258. doi: 104154/gc.2010.20

KARAMATA S., KRSTIĆ B., DIMITRIJEVIĆ M.D., DIMITRIJEVIĆ M.N., KNEŽEVIĆ V., STOJANOV, R. & FILIPOVIĆ, I. (1997): Terranes between the Moesian Plate and the Adriatic Sea.– Ann. Geol. Pays Hellén., 37/1, 429–477.

LIVI, K.J.T., FERRY, J.M., VEBLEN, D.R., FREY, M. & CONNOLLY, J.A.D. (2002): Reactions and physical conditions during metamorphism of Liassic aluminous black shales and marls in central Switzerland.– Eur. J. Mineral., 14/4, 647–672. doi: 10.1127/0935-1221/2002/0014-0647

MAGOTRA, R., NAMGA, S., ARORA, N. & SRIVASTAVA, P.K. (2017): New Classification Scheme of Fluorite Deposits.– International Journal of Geosciences, 8/4, 599–610. doi: 10.4236/ijg.2017.84032

MAGYAROSI, Z. & CONLIFFE, J. (2021): REE-Y patterns and fluid inclusion analysis of fluorites from the AGS fluorite deposit, St. Lawrence, Newfoundland.– Newfoundland and Labrador Department of Industry, Energy and Technology Geological Survey, Report 21–1, 27–47.

MAJER, V. (1964): Petrografija paleozojskih sedimenata sjeveroistočnog dijela Trgovske gore [Petrography of Palaeozoic sediments from the North-Eastern parts of the Trgovska Gora Mt – in Croatian with an English abstract].– Geološki vjesnik, 17, 79–92.

MILOŠEVIĆ, A., GRUBIĆ, A., CVIJIĆ, R. & ČELEBIĆ, M. (2017): Annexes the knowledge of the metalogenia of the Ljubija mineral area.– In: Book of Proceedings, 7th Balkan mine congress. Prijedor, 57–68.

MÖLLER, P., BAU, M., DULSKI, P. & LÜDERS, V. (1998): REE and yttrium fractionation in fluorite and their bearing on fluorite formation.– In: HAGNI, R.D. (ed.): Proceedings of the Ninth Quadrennial IAGOD Symposium. International Association on the Genesis of Ore Deposits, IAGOD, 575–592.

MORGAN, J.W. & WANDLESS, G.A. (1980): Rare earth element distribution in some hydrothermal minerals: evidence for crystallographic control.– Geochim. Cosmochim. Ac., 44/7, 973–980. doi: 10.1016/0016-7037(80)90286-0

PALINKAŠ, A.L., BOROJEVIĆ ŠOŠTARIĆ, S., STRMIĆ PALINKAŠ, S., PROCHASKA, W., PÉCSKAY, Z., NEUBAUER, F. & SPANGENBERG, J.E. (2016): The Ljubija geothermal field: A herald of the Pangea break-up (NW Bosnia and Herzegovina).– Geol. Croat., 69/1, 3–30. doi: 10.4154/gc.2016.02

PAMIĆ, J. (1993): Eoalpine to Neoalpine magmatic and metamorphic processes in the northwestern Vardar Zone, the easternmost Periadriatic Zone and the southwestern Pannonian Basin.– Tectonophysics, 226/1–4, 503–518. doi: 10.1016/0040-1951(93)90135-7

PAMIĆ, J. AMIĆ, J., GUŠIĆ, I. & JELASKA, V. (1998): Geodynamic evolution of the central Dinarides.– Tectonophysics, 297/1–4, 251–268. doi: 10.1016/S0040-1951(98)00171-1

PAMIĆ, J. & JURKOVIĆ, I. (2002): Palaeozoic tectonostratigraphic units of the northwest and central Dinarides and the adjoining South Tisia.− Int. J. Earth. Sci., 91, 538−554. doi: 10.1007/s00531-001-0229-8

RAJABZADEH, M.A. (2007): A fluid inclusion study of a large MVT barite-fluorite deposit: Komshecheh, Central Iran.– Iran. J. Sci. Technol. A., 31/A1, 73–87.

SAFINA, N.P., SOROKA, E.I., ANKUSHEVA, N.N., KISELEVA, D.V., BLINOV, I.A. & SADYKOV, S.A. (2021): Fluorite in Ores of the Saf’yanovka Massive Sulfide Deposit, Central Urals: Assemblages, Composition, and Genesis.– Geol. Ore Deposits, 63/2, 118–137. doi: 10.1134/S1075701521020057

SCHMID, S.M., BERZA, T., DIACONESCU, V., FROITZHEIM, N. & FÜGENSCHUH, B. (1998): Orogen-parallel extension in the Southern Carpathians.– Tectonophysics, 297/1, 209–228. doi: 10.1016/S0040-1951(98)00169-3

SLAUGHTER, J., KERRICK, D.M. & WALL, V.J. (1975): Experimental and thermodynamic study of equilibria in the system CaO–MgO–SiO2–H2O–CO2.– Am. J. Sci., 275/2, 143–162. doi: 10.2475/ajs.275.2.14

SRIVASTAVA, P.K. & SUKCHAIN (2005): Petrographic Characteristics and Alteration Geochemistry Granite-hosted Tungsten Mineralization at Degana, NW India.– Resour. Geol., 55/4, 373–384. doi: 10.1111/j.1751-3928.2005.tb00258.x

STATSOFT, INC. (2012): Electronic Statistics Textbook. Tulsa, OK: StatSoft. Available form:

TAYLOR, S.R. & MCLENNAN, S.M. (1995): The geochemical evolution of the continental crust.– Rev. Geophys., 33/1, 241–265. doi: 10.1029/95RG00262

THOMAS, R. (1994): Fluid evolution in relation to the emplacement of the Variscan granites in the Erzgebirge region: A review of the melt and fluid inclusion evidence.– In: SELTMANN, R., KÄMPF, H. & MÖLLER P. (eds): Metallogeny of Collisional Orogens. Czech Geological Survey, Prague, 70–81.

TOMLJENOVIĆ, B. (2002): Strukturne značajke Medvednice i Samoborskog gorja [Structural characteristics of the Mt. Medvednica and the Samoborsko gorje Mt. – in Croatian].– PhD Thesis, Faculty of Mining, Geology and Petroleum engineering, University of Zagreb, 208 p.

WILLINGSHOFER, E. (2000): Extensionin collisional orogenic belts: the Late Cretaceous evolution of the Alps and Carpathians.– PhD Thesis, Vrije University, Amsterdam, 146 p.

WRIGHT, J.H. & KWAK, T.A.P. (1989): Tin-bearing greisens of Mount Bischoff, northwestern Tasmania, Australia.– Econ. Geol., 84/3, 551–574. doi: 10.2113/gsecongeo.84.3.551

XU, C., TAYLOR, R.N., LI, W., KYNICKY, J., CHAKHMOURADIAN, A.R. & SONG, W. (2012): Comparison of fluorite geochemistry from REE deposits in the Panxi region and Bayan Obo.– China. J. Asian. Earth. Sci., 57, 76–89. doi: 10.1016/j.jseaes.2012.06.007