The Žune Ba-F epithermal deposit: Geophysical characterization and exploration perspective

Main Article Content

Jasna Orešković
Aleksej Milošević
Saša Kolar
Sibila Borojević Šoštarić
https://orcid.org/0000-0003-1861-2470

Abstract

The Žune barite-fluorite ore body in northwestern Bosnia and Herzegovina has been explored using geophysical methods to determine the spatial distribution of the mineralization. The mineralization occurs in a 50 m long ESE-WNW fault zone in the form of a subvertical barite-fluorite vein, transforming to strings of tiny  barite veins and impregnations at the immediate contact with the host dolostone. The geophysical research included 2D electrical resistivity tomography (ERT) measured along four profiles. In addition to resistivity inversion results, forward modelling has been performed along two profiles transecting the mining cut. Prior to surface geophysical measurements, detailed geological field mapping of the ore body and host rocks was  undertaken. The main faults defined by geological field mapping, have been confirmed with geophysical results as well as the contact of the host dolostone with Lower to Middle Triassic sandstones. The contact is defined to the south of the deposit. However, based on the resistivity model, the position of the contact is about ten metres further south. The forward modelling results revealed that the barite-fluorite vein in the area of the mining cut is limited to a depth of about 10 m and the length is about 70 m. The vein is up to 5 m thick and almost 10 m wide. There is no indication for barite-fluorite mineralization in the area south of the studied  mining cut with predominant Triassic sandstones, while anomalies that may be associated with ore bodies are  present in the northern and northeastern parts, composed of Carboniferous dolostone. 

Downloads

Download data is not yet available.

Article Details

Section
Original Scientific Papers
Author Biography

Sibila Borojević Šoštarić, University of Zagreb, Faculty of Mining Geology and Petroleum Engineering, Zagreb, Croatia

Department of Mineralogy, Petrology and Mineral Recourses

References

AKPAN, A.E., EBONG, D.E., EKWOK, S.E. & JOSEPH, S. (2014): Geophysical and Geological Studies of the Spread and Industrial Quality of Okurike Barite Deposit.– Am. J. Environ. Sci., 10/6, 566–574. doi: 10.3844/ajessp.2014

BANIA, G. & ĆWIKLIK, M. (2013): 2D Electrical Resistivity Tomography interpretation ambiguity – example of field studies supported with analogue and numerical modelling.– Geology Geophysics & Environment, 39/4, 331–339. doi: 10.7494/geol.2013.39.4.331

BARNES, D.F., MAYFIELD, C.F., MORIN, R.L. & BRYNN S. (1982): Gravity measurements useful in the preliminary evaluation of the Nimiuktuk barite deposit, Alaska.– Econ. Geol., 77/1, 185–189. doi: 10.2113/gsecongeo.77.1.185

BATISTA-RODRÍGUEZ, J.A. & PÉREZ-FLORES, M.A. (2021): Contribution of ERT on the Study of Ag-Pb-Zn, Fluorite, and Barite Deposits in Northeast Mexico.– Minerals, 11, 249, 1–16. doi:10.3390/min11030249

BISHOP, J. R. & EMERSON, D. W. (1999): Geophysical properties of zinc‐bearing deposits.– Aust. J. Earth Sci., 46/3, 311–328. doi: 10.1046/j.1440-0952.1999.0

BOROJEVIĆ ŠOŠTARIĆ, S., PALINKAŠ, A.L., STRMIĆ PALINKAŠ, S., BERMANEC, V., NEUBAUER, F., SPANGENBERG, J.E. & PROCHASKA, W. (2009): Origin of siderite–barite-polysulfide mineralisation in Petrova and Trgovska Gora Mts., NW Dinarides.– Miner Petrol, 97, 111–128.

BOROJEVIĆ ŠOŠTARIĆ, S., ROGLIĆ, M., MILOŠEVIĆ, A., BRENKO, T. (2022): Žune Ba-F epithermal deposit Part 1: Mineralogical and geochemical characteristics.–Geol. Croat., 75/3, 393–410. doi: 10.4154/gc.2022.24

CARDARELLI, E. & DE DONNO, G. (2019): Advances in electric resistivity tomography: Theory and case studies.– In: PERSICO, R., PIRO, S. & LINFORD, N. (eds.): Innovation in near-surface geophysics, 23–57, Elsevier. doi: 10.1016/B978-0-12-812429-1.00002-7

ČIČIĆ, S. (1976): Mineralne sirovine Bosne i Hercegovine: II knjiga – Ležišta nemetala.– Geoinženjering, Sarajevo, 231–446.

DE GROOT-HEDLIN, C. & CONSTABLE, S. (1990): Occam’s inversion to generate smooth, two-dimensional models form magnetotelluric data.– Geophysics, 55, 1613–1624. doi: 10.1190/1.1442813

DEY, A. & MORRISON, H.F. (1979): Resistivity modelling for arbitrary shaped twodimensional structures.– Geophys. Prospect., 27, 1020–1036. doi: 10.1111/j.1365-2478.1979.tb00961.x

EDWARDS, L.S. (1977): A modified pseudosection for resistivity and induced polarization.– Geophysics, 42, 1020–1036.

EVRARD, M., DUMONT, G., HERMANS, T., CHOUTEAU, M., FRANCIS, O., PIRARD, E. & NGUYEN, F. (2018): Geophysical Investigation of the Pb–Zn Deposit of Lontzen–Poppelsberg, Belgium.– Minerals, 8/6, 233. doi: 10.3390/min8060233

FORD, K., KEATING, P. & THOMAS, M.D. (2007): Overview of geophysical signatures associated with Canadian ore deposits.– In: GOODFELLOW, W.D. (ed.): Mineral Deposits of Canada: A Synthesis of Major Deposit Types, District Metallogeny, the Evolution of Geological Provinces, and Exploration Methods. Geological Association of Canada, Mineral Deposits Division, St. John’s, 939–970.

GARAŠIĆ, V. & JURKOVIĆ, I. (2012): Geochemical characteristics of different iron ore types from the Southern Tomašica deposit, Ljubija, NW Bosnia. – Geol. Croat. 65/2, 255–270. doi: 10.4154/GC.2012.16

GRUBIĆ, A. & CVIJIĆ, R. (2003): New contribution in geology and metallogeny of the Ljubija iron mine. Institute of Mining Prijedor, Prijedor, 137 p.

GRUBIĆ, A., CVIJIĆ, R., MILOŠEVIĆ, A. & ČELEBIĆ, M. (2015): Importance of olistostrome member for metallogeny of Ljubija iron ore deposits.– Arch. Techn. Sci., 13/1, 1–8. doi: 10.7251/afts.2015.0713.001G

GRUBIĆ, A. & PROTIĆ, LJ. (2003): Novi prilozi za geologiju i metalogeniju rudnika gvožđa Ljubija.– Rudarski institute, Prijedor, 63–137.

HRVATOVIĆ, H. (2006): Geological guidebook through Bosnia and Herzegovina.– Geological Survey of Federation Bosnia and Herzegovina, Sarajevo, 163 p.

JEREMIĆ, M. (1958): Baritno-fluoritno ležište Žune kod Ljubije.– Rudarko-metalurški zbornik, 4, 465–474.

JURIĆ, M. (1971): Geologija područja sanskog paleozoika u sjeverozapadnoj Bosni.–Poseb. Izd. Geol. Glas., 11, 1–146.

LOKE, M.H., ACWORTH, I. & DAHLIN, T. (2003): A comparison of smooth and blocky inversion methods in 2D electrical imaging surveys.– Explor. Geophys., 34/3, 182–187. doi: 10.1071/EG03182

LOKE, M.H. & BARKER, R.D. (1996): Rapid least-squares inversion of apparent resistivity pseudosections by a quasi-Newton method.– Geophys. Prospect., 44, 131–152. doi: 10.1111/j.1365-2478.1996.tb00142.x

MEJU, M.A. (2002): Geoelectromagnetic Exploration for Natural Resources: Models, Case Studies and Challenges.– Surveys in Geophysics, 23, 133–205. doi: 10.1023/A:1015052419222

MILOŠEVIĆ, A., ALEKSEEV, A., ZAYTSEVA, E., NOVAK, M., KOLAR-JURKOVŠEK, T. & JURKOVŠEK, B. (2021): Late Carboniferous biota from the Ljubija iron mine area, Bosnia and Herzegovina.– Geologija, 64/1, 65– 80, doi: 10.5474/geologija.2021.004

PALINKAŠ, A.L., BOROJEVIĆ ŠOŠTARIĆ, S., STRMIĆ PALINKAŠ, S., PROCHASKA, W., PÉCSKAY, Z., NEUBAUER, F. & SPANGENBERG, J.E. (2016): The Ljubija geothermal field: A herald of the Pangea break-up (NW Bosnia and Herzegovina).– Geol. Croat., 69/1, 3–30. doi: 10.4154/gc.2016.02

PAMIĆ, J. (1993): Eoalpine to Neoalpine magmatic and metamorphic processes in the northwestern Vardar Zone, the easternmost Periadriatic Zone and the southwestern Pannonian Basin.– Tectonophysics, 226/1–4, 503–518. doi: 10.1016/0040-1951(93)90135-7

PAMIĆ, J., GUŠIĆ, I. & JELASKA, V. (1998): Geodynamic evolution of the central Dinarides.– Tectonophysics, 297/1–4, 251–268. doi: 10.1016/S0040-1951(98)00171-1

SCHMID, S.M., BERZA, T., DIACONESCU, V., FROITZHEIM, N. & FÜGENSCHUH, B. (1998): Orogen-parallel extension in the Southern Carpathians.– Tectonophysics, 297/1, 209–228. doi: 10.1016/S0040-1951(98)00169-3

SCHÖN, J.H. (2011): Physical Properties of Rocks - A Workbook.– In: CUBITT, J. (ed.): Vol. 8: Handbook of Petroleum Exploration and Production. Elsevier, Netherlands, 273–335.

STRMIĆ PALINKAŠ, S., SPANGENBERG, J.E. & PALINKAŠ A.L. (2009): Organic and Inorganic Geochemistry of Ljubija Siderite Deposits, NW Bosnia and Herzegovina.– Miner Deposita, 44, 893–913. doi 10.1007/s00126-009-0249-z

TELFORD, W.M., GELDART, L.P., SHERIFF, R.E. (1990): Applied Geophysics, 2nd Edt.– Cambridge University Press.

TOMLJENOVIĆ, B. (2002): Strukturne značajke Medvednice i Samoborskog gorja [Structural characteristics of the Mt. Medvednica and the Samoborsko gorje Mt. – in Croatian].– PhD Thesis, Faculty of Mining, Geology and Petroleum engineering, University of Zagreb, 208 p.

WARD, S.H. (1990): Resistivity and Induced Polarization Methods.– Geotechnical and Environmental Geophysics, Volume I: Review and Tutorial, 147–190. doi: 10.1190/1.9781560802785.ch6

WILLINGSHOFER, E. (2000): Extension in collisional orogenic belts: the Late Cretaceous evolution of the Alps and Carpathians.– PhD Thesis, Vrije University, Amsterdam, 146 p.