Continuous Wavelet Transformation to Quantify small-scale Cycles of Petrophysical Properties; a New Approach Applied in a Potential Disposal Repository of Nuclear Waste, SW Hungary

Main Article Content

Saja Mohammad Abutaha
Janos Geiger
Ferenc Fedor
Sándor Gulyás


Continuous Wavelet Transformation (CWT) was applied to study the small-scale repetitive oscillations of porosity distribution patterns in a 5 m silty-claystone core sample of the Boda Claystone Formation. We handled the fluctuations in voxel porosity averages over unequal depth distributions as signals over uneven time intervals. The strength of wavelet analysis lies in the ability to study the fluctuation of a signal in detail, i.e., the wavelet transforms permit automatic localization of the cyclic attributes' sequences both in time (the depth domain) and according to their frequency (the frequency domain). Thereupon, three main frequency branches (cycles) were discerned: small scale (5, 6.67, and 11 cm), intermediate scale (20, 30 cm), and large scale (66.67 cm).

Depending on the CWT coefficients magnitude plot, we were able to detect the developments of porosity oscillation according to the depth variable. Thus, small-scale cycles were seen throughout the core sample., the intermediate-scale cycles were strong in the upper parts of the core sample and dwindled toward greater depths, and the large cycle was predominant in the lower part of the core sample.

The cross-correlation of the wavelet coefficients of porosity and rock-forming components allows a detailed study of the inter-dependence of such parameters as their relationship changes over time. The distinct peaks at zero lag indicates that the measured wavelet coefficient series were contemporaneously correlated; their strong positive correlations suggest that both examined series respond similarly and simultaneously to other exogenous factors. The results emphasize that cyclical porosity fluctuations at all scales would concern three main factors; sediment deposition, diagenetic processes, and structural deformation (i.e., convolute laminations).


Download data is not yet available.

Article Details

Original Scientific Papers


ABUTAHA, S. M., GEIGER, J., GULYÁS, S. & FEDOR, F. (2022): Calculating the representative elementary volume of porosity using X-ray computed tomography: Boda Claystone Formation core sample/Hungary.- Acta geologica slovaca, 14/1, 25–36.

ABUTAHA, S.M., GEIGER J., GULYÁS S. & FEDOR, F. (2021B): Assessing the representative elementary volume of rock types by X-ray computed tomography (CT) – a simple approach to demonstrate the heterogeneity of the Boda Claystone Formation in Hungary.- Geologos, 27/3, 157–152. doi: 10.2478/logos-2021-0018

ABUTAHA, S.M., GEIGER J., GULYÁS, S. & FEDOR, F. (2021A): Evaluation of 3D small-scale lithological heterogeneities and pore distribution of the Boda Claystone Formation using X-ray computed tomography images (CT).- Geologia Croatica, 74/3, 305–318. doi: 10.4154/gc.2021.17

ADDISON, P. S. (2002): The Illustrated Wavelet Transform Handbook.- IOP Publishing Ltd. doi: 10.1887/0750306920

ADEYILOLA, A., NORDENG, S. & HU, O. (2022): Porosity and Pore Networks in Tight Dolostone––Mudstone Reservoirs: Insights from the Devonian Three Forks Formation, Williston Basin, USA.- Journal of Earth Science, 33/2, 462-481. doi: 10.1007/s12583-021-1458-3

AKIN, S. & KOVSCEK, A. R. (2003): Computed tomography in petroleum engineering research.- In: MEES, F., SWENNEN, R., VAN GEET, M. & JACOBS, P. (Eds): Application of X-ray computed tomography in the geosciences. Special Publication, Geological Society of London, 215, 23–38.

AL-YASERI, A.Z., LEBEDEV, M., VOGT, S.J., JOHNS, M. L, BARIFCANI, A. & IGLAUER, S. (2015): Pore-scale analysis of formation damage in Bentheimer sandstone with in-situ NMR and micro-computed tomography experiments.- J. Petrol. Sci., 129, 48–57. doi: 10.1016/j.petrol.2015.01.018

ÁRKAI, P., BALOGH, K., DEMÉNY, A., FÓRIZS I., NAGY, G. & MÁTHÉ, Z. (2000): Composition, diagenetic and post-diagenetic alterations of a possible radioactive waste repository site: The Boda Albitic Claystone Formation, southern Hungary.- Acta Geologica Hungarica, 43, 351 – 378.

BALÁZS, G.Y.L., LUBLÓY, É. & FÖLDES, T. (2018): Evaluation of concrete elements with X-Ray computed tomography.- Journal of Materials in Civil Engineering, 30, 1-9. doi: 10.1061/(ASCE)MT.1943-5533.0002389

BALLA, Z. (1987): Tectonics of the Beukkian (north Hungary) Mesozoic, relations to the West Carpathians, Dinarids.- Acta Geol. Hung., 30/3–4, 257–287.

BARABÁS, A. & BARABÁS-STUHL, Á. (1998): Stratigraphy of the Permian formations in the Mecsek Mountains and its surroundings.- In: Stratigraphy of geological formations of Hungary. Geological and Geophysical Institute of Hungary, 187 – 215 p. (in Hungarian)

BJØRLYKKE, K., AAGAARD, P., DYPVIK, H., HASTINGS, D.S. & HARPER, A.S. (1986): Diagenesis and reservoir properties of Jurassic sandstones from the Haltenbanken area, offshore mid-Norway.- In: Spencer, A.M. (ed.): Habitat of Hydrocarbons on the Norwegian Continental Shelf. Norwegian Petroleum Society, Oslo, 275–286.

BOISSON, J.Y. (2005): Clay Club catalogue of characteristics of argillaceous rocks.- In: Radioactive waste management, OECD Nuclear Energy Agency, 72 p.

BOLES, J. R.& FRANKS, S. G. (1979): Clay diagenesis in Wilcox sandstones of southwest Texas: Implications of smectite diagenesis on sandstone cementation.- J. Sediment. Res., 49, 55–70.

CHAMOLI, A. (2009): Wavelet Analysis of Geophysical Time Series.- Earth Science India, 2/4, 258-275.

CHOWDHURY, A.H. & NOBLE, J.P.A. (1993): Feldspar albitization and feldspar cementation in the Albert formation reservoir sandstones, New Brunswick, Canada.- Mar. Pet. Geol.,10, 394–402. doi: 10.1016/0264-8172(93)90083-5

CSONTOS, L. &VÖRÖS, A. (2004): Mesozoic plate tectonic reconstruction of the Carpathian region.- Palaeogeogr. Palaeoclimatol. Palaeoecol. 210, 1-56. doi: 10.1016/j.palaeo.2004.02.033

DAVIS, J. C. (1986): Statistics and data analysis in geology.- John Wiley & Sons Inc., New York.

DUCHESNE, M. J., MOORE, F., LONG, B.F. & LABRIE, J. (2009): A rapid method for converting medical Computed Tomography scanner topogram attenuation scale to Hounsfield Unit scale and to obtain relative density values.- Engineering Geology, 103, 100 – 105. doi: 10.1016/j.enggeo.2008.06.009

DUTTON, S.P. (2008): Calcite cement in Permian deep-water sandstones, Delaware Basin, west Texas: Origin, distribution, and effect on reservoir properties.- AAPG Bulletin, 92/6, 765–787. doi: 10.1306/01280807107

FEDOR, F., MÁTHÉ, Z., ÁCS, P. & KORONCZ, P. (2018): New results of Boda Claystone research - genesis, mineralogy, geochemistry, petrophysics.- In: NORRIS, S., NEEFT, E.A.C. & VAN GEET, M. (Eds.): Multiple Roles of Clays in Radioactive Waste Confinement. Geological Society, London, Special Publications, 482, doi: 10.1144/SP482.13

FITCH, P., LOVELL, M., DAVIES, S., PRITCHARD, T. & HARVEY, P. (2015): An integrated and quantitative approach to petrophysical heterogeneity.- Marine and Petroleum Geology, 63, 82 – 96. doi: 10.1016/j.marpetgeo.2015.02.014

FÖLDES, T. (2011): Integrated processing based on CT measurement.- Journal of Geometry and Physics, 1, 23–41.

FÖLDES, T., KISS, B., ÁRGYELÁN, G., BOGNER, P., REPA, I. & HIPS, K. (2004): Application of medical computer tomography measurements in 3D reservoir characterization.- Acta Geologica Hungarica, 47, 63–73.

FOSTER, G. (1996): Wavelets for period analysis of unevenly sampled time series.- The Astronomical Journal, 112, 1709-1729. doi: 10.1086/118137

FRAZER, G., WULDER, M. & NIEMANN, K. (2005): Simulation and quantification of the fine scale spatial pattern and heterogeneity of forest canopy structure: a lacunarity based method designed for analysis of continuous canopy heights.- Forest Ecology and Management, 214, 65–90. doi: 10.1016/j.foreco.2005.03.056

GROSSMAN, A. & MORLET, J. (1985): Decomposition of functions into wavelets of constant shape and related transforms.- In: STREIT, L., (ed.): Mathematics, and physics, lectures on recent results, World Scientific Publishing, Singapore.

GURLEY, K. & KAREEM, A. (1999): Application of wavelet transforms in earthquake, wind, and ocean engineering.- Eng. Struct., 21, 149– 167.

HAAS, J.& PÉRÓ, C.S. (2004): Mesozoic evolution of the Tisza Mega-unit.- International Journal of Earth Sciences 93, 297–313.

HAYATDAVOUDI, A. & GHALAMBOR, A. (1996): Controlling formation damage caused by kaolinite clay minerals: Part I.- In: SPE Formation Damage Control Symposium, Society of Petroleum Engineers, SPE-31118-MS. doi: 10.2118/31118- MS

HEISMANN, B.J., LEPPERT J. & STIERSTORFER, K. (2003): Density and atomic number measurements with spectral x-ray attenuation method.- Journal of Applied Physics, 94, 2073 – 2079. doi: 10.1063/1.1586963

HINAI, A. A., REZAEE, R. & ESTEBAN, L. (2014): Comparisons of Pore Size Distribution: A Case from the Western Australian Gas Shale Formations.- Journal of Unconventional Oil and Gas Resources, 8, 1–13. doi: 10.1016/j.juogr.2014.06.002

HORVÁTH, F. (1993): Towards a mechanical model for the formations of the Pannonian basin.- Tectonophysics, 226, 333–357. doi: 10.1016/0040-1951(93)90126-5

HOUNSFIELD, G.N. (1973): Computerized transverse axial scanning (tomography). Description of system.- British Journal of Radiology 46, 1016-1022. doi: 10.1016/j.jhydrol.2010.02.029

JÁMBOR, Á. (1964): A Mecsek hegység alsópermi képződményei [The Early Permian formations of the Mecsek Mts.].- Mecsekérc Ltd. Archives, Pécs, 127 pp.

KETCHAM, R.A. & CARLSON, W.D. (2001): Acquisition, optimization and interpretation of X-ray computed tomographic imagery: applications to geosciences.- Computational Geosciences 27, 381–400. doi: 10.1016/S0098-3004(00)00116-3

KONRÁD, G.Y., SEBE, K., HALÁSZ, A. & BABINSZKI, E. (2010): Sedimentology of a Permian playa lake: The Boda Claystone Formation, Hungary.- Geologos 16, 27–41. doi: 10.2478/v10118-010-0002-1

LABAT, D. (2010): Cross wavelet analyses of annual continental freshwater discharge and selected climate indices.- Journal of Hydrology. 385/1-4, 269-278. doi: 10.1016/j.jhydrol.2010.02.029

LÁZÁR, K. & MÁTHÉ, Z. (2012): Claystone as a potential host rock for nuclear waste storage.- In: VALAŠKOVA, M. & MARTYNKOVA, G.S. (eds): Clay minerals in nature – their characterization, modification and application. Intechopen, London, 55–80.

MARTELET, G., SAILHAC, P., MOREAU, F. & DIAMENT, M. (2001): Characterization of geological boundaries using 1-D wavelet transform on gravity data: theory and application to the Himalayas.- Geophysics, 66, 1116–1129. doi: 10.1190/1.1487060

MÁTHÉ, Z. (1998): Summary report of the site characterization program of the Boda Siltstone Formation.- Mecsek Ore Environment Company, Pécs, 4.

MÁTHÉ, Z. (2015): Results of mineralogical, petrological and geochemical investigation of Boda Claystone Formation.- Ph.D. thesis summary, ELTE Department of Petrology and Geology, Budapest, 1-6. [in Hungarian]

MERRY, R. J. E. (2005): Wavelet theory and applications. Literature study.- Eindhoven University of Technology, Eindhoven, 50 p.

MILLIKEN, K. L., & LAND, L. S. (1991): Reverse weathering, the carbonate-feldspar system, and porosity evolution during burial of sandstones.- AAPG Bulletin, 75, 636.

MILLIKEN, K. L., & LAND, L. S. (1993). The origin and fate of silt-sized carbonate in subsurface Miocene–Oligocene mudstones, south Texas Gulf Coast.- Sedimentology, 40, 107–124. doi: 10.1111/j.1365-3091.1993.tb01094.x

MIN, H., ZHANG, T., LI, Y,ZHAO, S.H., LI, J., LIN, D. & WANG, J. (2019): The Albitization of K Feldspar in Organic- and Silt-Rich Fine-Grained Rocks of the Lower Cambrian Qiongzhusi Formation in the Southwestern Upper Yangtze Region, China.- Minerals, 9/10, 620). doi:10.3390/min9100620

MORAD, S., BERGAN, M., KNARUD, R. & NYSTUEN, J. P. (1990): Albitization of detrital plagioclase in Triassic reservoir sandstones from the Snorre Field, Norwegian North Sea.- Journal of Sedimentary Research , 60/3, 411–425. doi: 10.1306/212F91AB-2B24-11D7-8648000102C1865D

MOSS, R. M., PEPIN G.P. & DAVIS, L.A. (1990): Direct measurement of the constituent porosities in a dual porosity matrix.- In: SCA conference, 9003.

NÉMETH, T. & MÁTHÉ, Z. (2016): Clay mineralogy of the Boda Claystone Formation (Mecsek Mts., SW Hungary).- Open Geoscience, 8, 259–274. doi: 10.1515/geo-2016-0024

NORBERG, N., NEUSSER, G., WIRTH, R. & HARLOV, D. (2011): Microstructural evolution during experimental albitization of k-rich alkali feldspar.- Contrib. Mineral. Petrol., 162/3, 531–546. doi: 10.1007/s00410-011-0610-y

OUADFEUL, S. & ALIOUABE, L. (2011): Automatic lithofacies segmentation using the wavelet transform modulus maxima lines combined with the detrended fluctuation analysis.- Arabian Journal of Geosciences, 6/3, 625-634. doi: 10.1007/s12517-011-0383-7.

OUADFEUL, S. (2007): Very fines layers’ delimitation using the wavelet transform modulus maxima lines (WTMM) combined with the DWT, SEG SRW.- Université des Sciences et de la Technologie Houari Boumediene, Antalya.

OUADFEUL, S., ELADJA, S. & ALIOUANE, L. (2010): Structural boundaries form geomagnetic data using the continuous wavelet transform.- Arabian Journal of geosciences, 5, 365-370, doi: 10.1007/s12517-010-0273

PANDA, M. N., MOSHER, C. C. & CHOPRA A. K. (2000): Application of Wavelet Transforms to Reservoir-Data Analysis and Scaling..- SPE J. 5/1, 92–101. doi: 10.2118/60845-PA

POLIKAR, R. (1999): The wavelet tutorial. URL: polikar/WAVELETS/WTtutorial.html

POTOČKI, K., GILJA, G. & KUNŠTEK, D. (2017): An overview of the applications of wavelet transform for discharge and suspended sediment analysis.- Tehnički vjesnik, 24/5, 1561-1569.

PROKOPH, A. & BARTHELMES, F. (1996): Detection of nonstationarities in geological time series: wavelet transform of chaotic and cyclic sequences.- Computers & Geosciences, 22, 1097-108. doi: 10.1016/S0098-3004(96)00054-4

REMMY, R. R. & FERRELL, R. E. (1989): Distribution and origin of analcime in marginal lacustrine mudstones of the Green River Formation, south-central Uinta Basin, Utah.- Clays and Clay Minerals, 37, 419–432. doi: 10.1346/CCMN.1989.0370505

SAIGAL, G.C., MORAD, S., BJØRLYKKE, K., EGEBERG, P., K. & AAGAARD, P. (1988): Diagenetic albitization of detrital k-feldspar in Jurassic, lower cretaceous, and tertiary clastic reservoir rocks from offshore Norway, I. textures and origin.- J. Sediment. Res. 58, 1003–1013. doi: 10.1306/212F8EE5-2B24-11D7-8648000102C1865D

SCHNEIDER, J., KÖRNER, F., ROSCHER, M. & KRONER, U. (2006): Permian climate development in the northern peri-Tethys area – the Lodève basin, French Massif Central, compared in a European and global context.- Paleogeography, Palaeoclimatology, Palaeoecology, 240, 161–183. doi: 10.1016/j.palaeo.2006.03.057

SHOKROLLAHI, E., ZARGAR, G. & RIAHI, M. A. (2013): Using continuous wavelet transform and short time Fourier transform as spectral decomposition methods to detect of stratigraphic channel in one of the Iranian south-west oil fields.- Int. J. Sci. Emerg. Technol, 5, 291-299.

SIMON, D. & ANDERSON, M. (1990): Stability of clay minerals in acid.- In: SPE Formation Damage Control Symposium. Society of Petroleum Engineers, SPE-19422-MS. doi: 10.2118/19422-MS.P.2

SOEDER, D.J. (1986): Laboratory drying procedures and the permeability of tight sandstone core.- SPE Formation Evaluation, 1, 16-22. doi: 10.2118/11622-PA

TEMPLETON, M. (2004): Time-series analysis of variable star data.- The Journal of the American Association of Variable Star Observers, 32, 41-54.

VAN GEET, M., SWENNEN, R. & WEVERS, M. (2000): Quantitative analysis of reservoir rocks by microfocus X-ray computerised tomography.- Sedimentary Geology 132, 25–36. doi: 10.1016/S0037-0738(99)00127-X

VARGA, A., RAUCSIK, B., SZAKMÁNY, G.Y. & MÁTHÉ, Z. (2006): Mineralogical, petrological and geochemical characteristics of the siliciclastic rock types of Boda Siltstone Formation.- Bulletin of the Hungarian Geological Society, 136/2, 201–232.

VARGA, A.R., SZAKMÁNY, G.Y., RAUCSIK, B. & MÁTHÉ, Z. (2005): Chemical composition, provenance and early diagenetic processes of playa lake deposits from the Boda Siltstone Formation (Upper Permian), SW Hungary.- Acta Geologica Hungarica, 48, 49 – 68. doi: 10.1556/AGeol.48.2005.1.2

WENG, H.-Y. & LAU K. M. (1994): Wavelets, period doubling, and time-frequency localization with application to organization of convection over the tropical western Pacific.- J. Atmos. Sci., 51, 2523-2541.

WENG, I. K., GILJA, G. & KUNŠTEK, D. (2017): An overview of the applications of wavelet transform for discharge and suspended sediment analysis.- Tehnički vjesnik, 24/5, 1561-1569.

WESOLOWSKI, J. R. & LEV, H. M., (2005): CT: History, technology, and clinical aspects.- Seminars in Ultrasound, CT and MRI, 26, 376–379.

WILKIN, R. T., BARNES, H. L. & BRANTLEY, S. L. (1996): The size distribution of framboidal pyrite in modern sediments: An indicator of redox conditions.- Geochim. Cosmochim. Acta, 60, 3897–3912. doi: 10.1016/0016-7037(96)00209-8

WITHERS, P. J., BOUMAN, C., CARMIGNATO, S., CNUDDE, V., GRIMALDI, D., HAGEN, C.K., ERIC MAIRE, E., MANLEY, M., PLESSIS, A. & STOCK, S. (2021): X-ray Computed Tomography.- Nature Reviews Methods Primers, 1/18, 1-21. doi: 10.1038/s43586-021-00015-4

YANG, Y., LI Y., YAO J., ZHANG, K., IGLAUER, K., LUQUOT L. & WANG, Z. (2019): Formation damage evaluation of a sandstone reservoir via pore-scale X-ray computed tomography analysis.- Journal of Petroleum Science and Engineering, 183, 106356. doi: 10.1016/j.petrol.2019.106356

ZHOU, Z., GUNTER, W. & JONASSON R. (1995): Controlling formation damage using clay stabilizers: a review.- In: Annual Technical Meeting. Petroleum Society of Canada, PETSOC, 95–71. doi: 10.2118/95-71