The Alps as the main source of sand for the Late Miocene Lake Pannon (Pannonian Basin, Croatia)

Main Article Content

Mario Matošević
Eduardo Garzanti
Sanja Šuica
Danilo Bersani
Frane Marković
Ivan Razum
Anita Grizelj
Krešimir Petrinjak
Marijan Kovačić
Davor Pavelić

Abstract

The provenance of the Upper Miocene sandstones from the Sava and Drava depressions of the North Croatian  Basin was investigated using petrographic, geochemical, and heavy mineral analyses, including Raman  spectroscopy. The study of these sandstones, which represent important oil and gas reservoirs in Croatia,  allowed reconstruction of the Late Miocene source-to-sink model of the Lake Pannon drainage system and the  evolution of the southwestern Pannonian Basin. The studied feldspatho-litho-quartzose sandstones consist of a  mixture of sedimentary, metamorphic, and igneous detritus. Heavy-mineral assemblages are dominated by  almandine-rich garnet with apatite, epidote, tourmaline, rutile, zircon, staurolite, and zoisite, indicative of low to  medium-grade metamorphic source rocks. Higher concentrations of Ca and Mg than in the Upper Continental  Crust standard (UCC) additionally reflect the abundance of limestone and dolostone rock fragments as well as carbonate cement. Geochemical compositional variations between sandstone samples from the Sava and Drava  depressions primarily stem from diagenetic processes. CIX and alpha values indicate only minor  weathering. Compositional features indicate an orogenic source located in the Eastern Alps and primarily  represented by Austroalpine and Penninic nappes. This research offers a novel perspective to distinguish the  Upper Miocene reservoirs from other sedimentary units within the basin, contributing to a more comprehensive understanding of the regional geological dynamics and supporting future exploration projects also related to  energy transition. 

Downloads

Download data is not yet available.

Article Details

Section
Original Scientific Papers

References

AITCHISON, J. (1986): The Statistical Analysis of Compositional Data.– Chapman and Hall, London, 416 p. doi: 10.1007/978-94-009-4109-0

ALCALDE, J., HEINEMANN, N., MABON, L., WORDEN, R.H., DE CONINCK, H., ROBERTSON, H., MAVER, M., GHANBARI, S., SWENNENHUIS, F., MANN, I., WALKER, T., GOMERSAL, S., BOND, C.E., ALLEN, M.J., HASZELDINE, R.S., JAMES, A., MACKAY, E.J., BROWNSORT, P.A., FAULKER, D.R. & MURPHY, S. (2019): Acorn: Developing full-chain industrial carbon capture and storage in a resource- and infrastructure-rich hydrocarbon province.– Journal of Cleaner Production, 233, 963–971. doi: 10.1016/j.jcanlepro.2019.06.087

AMOROSI, A., SAMMARTINO, I., DINELLI, E., CAMPO, B., GUERCIA, T., TRINCARDI, F. & PELLEGRINI, C. (2022): Provenance and sediment dispersal in the Po-Adriatic source-to-sink system unraveled by bulk-sediment geochemistry and its linkage to catchment geology.– Earth-Science Reviews, 104202. doi: 10.1016/j.earscirev.2022.104202

ANĐELKOVIĆ, F. & RADIVOJEVIĆ, D. (2021): The Serbian Lake Pannon formations - their significance and interregional correlation.– Geološki anali Balkanskog poluostrva, 82/2, 43–67. doi: 10.2298/GABP210420007A

ARATÓ R., OBBÁGY, G., DUNKL, I., JÓZSA, S., LÜNSDORF, K., SZEPESI, J., MOLNÁR, K., BENKÓ, Z. & VON EYNATTEN, H. (2021): Multi-method comparison of modern river sediments in the Pannonian Basin System – A key step towards understanding the provenance of sedimentary basin-fill.– Global and Planetary Change, 199, 103446. doi: 10.1016/j.gloplacha.2021.103446

ASCH, K. (2003): The 1:5 million international geological map of Europe and adjacent areas: development and implementation of a GIS-enabled concept.– Geological Yearbook, SA 3, BGR, Hannover, 172 p.

AUBRECHT, R., MERES, Š., SYKORA, M. & MIKUŠ, T. (2009): Provenance of the detrital garnets and spinels from the Albian sediments of the Czorsztyn Unit (Pieniny Klippen Belt, Western Carpathians, Slovakia).– Geologica Carpathica, 60/6, 463–483. doi: 10.2478/v10096-009-0034-z

BALÁZS, A., MATENCO, L., MAGYAR, I., HORVÁTH, F. & CLOETINGH, S. (2016): The link between tectonics and sedimentation in back-arc basins: New genetic constraints from the analysis of the Pannonian Basin.– Tectonics, 35, 1526–1559. doi: 10.1002/2015TC004109

BALÁZS, A. (2017): Dynamic model for the formation and evolution of the Pannonian Basin: The link between tectonics and sedimentation.– Utrecht Stud. Earth Sciences, 132, 153.

BALÁZS, A., MAGYAR, I., MATENCO, L., SZTANÓ, O., TŐKÉS, L. & HORVÁTH, F. (2018): Morphology of a large Palaeo-lake: Analysis of compaction in the Miocene-Quaternary Pannonian Basin.– Global and Planetary Change, 171, 134–147. doi: 10.1016/j.gloplacha.2017.10.012

BÁLDI, T. (1980): A korai Paratethys története.– Földtani Közlöny, 110, 456–472.

BASCH, O., PAVELIĆ, D. & BAKRAČ, K. (1995): Gornjopontski facijesi sjevernog krila Konjšćinske sinklinale kod Huma Zabočkog (Hrvatsko Zagorje).– In: VLAHOVIĆ, I., VELIĆ, I. & ŠPARICA, M. (eds.): First Croatian geological congress, Proceedings. Institute of Geology, Croatian Geological society, Zagreb, 57–61.

BERSANI, D., ANDÒ, S., VIGNOLA, P., MOLTIFIORI, G., MARINO, I.G., LOTTICI, P.P. & DIELLA, V. (2009): Micro-Raman spectroscopy as a routine tool for garnet analysis. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 73/3, 484–491. doi: 10.1016/j.saa.2008.11.033

BHATIA, M. (1983): Plate tectonics and geochemical composition of sandstones.– The Journal of Geology, 91, 611–627. doi: 10.1086/628815

BHATIA, M. & CROOK, K.A.W. (1986): Trace element characteristicsof graywackes and tectonic setting discrimination of sedimentary basins. Contributions to Mineralogy and Petrology 92, 181–193.

BIGUNAC, D. (2022): Depositional environments and subsurface settings of the Lower Miocene sediments in the Slavonia-Srijem, Drava and Sava Depressions.– Dissertation, Faculty of mining, geology and petroleum engineering, University of Zagreb.

BOUSQUET, R., OBERHÄNSLI, R., SCHMID, S.M., BERGER, A., WIEDERKEHR, M., ROBERT, C., MÖLLER, A., ROSENBERG, C., KOLLER, F., MOLLI, G. & ZEILINGER, G. (2012): Metamorphic framework of the Alps.– Comision for the Geological Map of the World (CCGM/CGMW).

BOYNTON, W.V. (1984): Cosmochemistry of the Rare Earth Elements: Meteorite Studies.– In: HENDERSON P. (ed.): Rare Earth Element Geochemistry.– Elsevier, Amsterdam, 63–114. doi: 10.1016/B978-0-444-42148-7.50008-3

DICKINSON, W.R. (1985): Interpreting provenance relations from detrital modes of sandstones.– In: ZUFFA G.G. (ed.): Provenance of arenites.– Reidel, Dordrecht, NATO ASI Series, 148, 333–361. doi: 10.1007/978-94-017-2809-6_15

DOLTON, L.G. (2006): Pannonian Basin Province, Central Europe (Province 4808) – Petroleum geology, total petroleum systems, and petroleum resource assessment.– U.S. Geological Survey, Bulletin 2204-B. doi: 10.3133/b2204B

EGOZCUE, J.J., PAWLOWSKY-GLAHN, V., MATEU-FIGUERAS, G. & BARCELO-VIDAL, C. (2003): Isometric Logratio Transformations for Compositional Data Analysis.– Mathematical Geology, 35/3, 279–300. doi: 10.1023/A:1023818214614

EGOZCUE, J.J. & PAWLOWSKY-GLAHN, V. (2005): CoDa-dendrogram: A new exploratory tool.– In: Compositional Data Analysis Workshop – CoDaWork’05, Proceedings, 1–10.

GARZANTI, E., RESENTINI, A., VEZZOLI, G., ANDÒ, S., MALUSÀ, M.G., PADOAN, M. & PAPARELLA, P. (2010): Detrital fingerprints of fossil continental-subduction zones (Axial Belt Provenance, European Alps).– The Journal of Geology, 118/4, 341–362. doi: 10.1086/652720

GARZANTI, E., PADOAN, M., ANDÒ, S., RESENTINI, A., VEZZOLI, G. & LUSTRINO, M. (2013): Weathering and relative durability of detrital minerals in equatorial climate: sand petrology and geochemistry in the East African Rift.– The Journal of Geology, 121/6, 547–580. doi: 10.1086/673259

GARZANTI, E., PADOAN, M., SETTI, M., LÓPEZ-GALINDO, A. & VILLA, I.M. (2014): Provenance versus weathering control on the composition of tropical river mud (southern Africa).– Chemical Geology, 366, 61–74. doi: 10.1016/j.chemgeo.2013.12.016

GARZANTI, E. (2016): From static to dynamic provenance analysis – Sedimentary petrology upgraded.– In: CARACCIOLO, L., GARZANTI, E., VON EYNATTEN, H. & WELTJE, G.J. (eds.): Sediment generation and provenance: processes and pathways.– Sedimentary Geology, 336, 3–13. doi: 10.1016/j.sedgeo.2015.07.010

GARZANTI, E. (2017): The maturity myth in sedimentology and provenance analysis.– Journal of Sedimentary Research, 87/4, 353–365. doi: 10.2110/jsr.2017.17

GARZANTI, E., ANDÒ, S., LIMONTA, M., FIELDING, L. & NAJMAN, Y. (2018): Diagenetic control on mineralogical suites in sand, silt, and mud (Cenozoic Nile Delta): Implications for provenance reconstructions.– Earth-Science Reviews, 185, 122–139. doi: 10.1016/j.earscirev.2018.05.010

GARZANTI, E. (2019): Petrographic classification of sand and sandstone.– Earth-Science Reviews, 192, 545–563. doi: 10.1016/j.earscirev.2018.12.014

GRIZELJ, A., TIBLJAŠ, D. & KOVAČIĆ, M. (2007): Mineralogy and geochemistry of Upper Miocene pelitic sediments of Zagorje Basin (Croatia): Implications for evolution of Pannonian Basin.– Geologica Carpathica, 58/3, 263–276.

GRIZELJ, A., TIBLJAŠ, D., KOVAČIĆ, M. & ŠPANIĆ, D. (2011): Diagenesis of Miocene pelitic sedimentary rocks in the Sava Depression (Croatia).– Clay Minerals, 46/1, 59–72. doi: 10.1180/claymin.2011.046.1.59

GRIZELJ, A., PEH, Z., TIBLJAŠ, D., KOVAČIĆ, M. & KUREČIĆ, T. (2017): Mineralogical and geochemical characteristics of Miocene pelitic sedimentary rocks from the south-western part of the Pannonian Basin System (Croatia): Implications for provenance studies.– Geoscience Frontiers, 8/1, 65–80. doi: 10.1016/j.gsf.2015.11.009

HARZHAUSER, M., LATAL, C. & PILLER, W. (2007): The stable isotope archive of Lake Pannon as a mirror of Late Miocene climate change.–Palaeogeography, Palaeoclimatology, Palaeoecology, 249, 335–350. doi: 10.1016/j.palaeo.2007.02.006

HARZHAUSER, M. & PILLER, W.E. (2007): Benchmark data of a changing sea – palaeogeography, palaeobiogeography and events in the Central Paratethys during the Miocene.– Palaeogeography, Palaeoclimatology, Palaeoecology, 253, 8–31. doi: 10.1016/j.palaeo.2007.03.031

HARZHAUSER, M. & MANDIC, M. (2008): Neogene lake systems of the Central and South-Eastern Europe – faunal diversity, gradients and interrelations.– Palaeogeography, Palaeoclimatology, Palaeoecology, 260, 417–434. doi: 10.1016/j.palaeo.2007.12.013

HAUKE, M., FROITZHEIM, N., NAGEL, T.J., MILADINOVA, I., FASSMER, K., FONSECA, R.O.C., SPRUNG, P. & MÜNKER, C. (2019): Two high-pressure metamorphic events, Variscan and Alpine, dated by Lu–Hf in an eclogite complex of the Austroalpine nappes (Schobergruppe, Austria).– International Journal of Earth Sciences (Geol Rundsch), 108, 1317–1331. doi: 10.1007/s00531-019-01708-8

HORVÁTH, F. (1993): Towards a mechanical model for the formation of the Pannonian Basin.– Tectonophysics, 26, 333–357. doi: 10.1016/0040-1951(93)90126-5

HORVÁTH, F. (1995): Phases of compression during the evolution of the Pannonian Basin and its bearing on hydrocarbon exploration.– Marine and Petroleum Geology, 12, 837–844. doi: 10.1016/0264-8172(95)98851-U

HORVÁTH, F., MUSITZ, B., BALÁZS, A., VEGH, A., UHRIN, A., NADOR, A., KOROKNAI, B., PAP, N., TOTH, T. & WORUM, G. (2015): Evolution of the Pannonian basin and its geothermal resources.– Geothermics, 53, 328–352. doi: 10.1016/j.geothermics.2014.07.009

HUBERT, J.F. (1962): A zircon-tourmaline-rutile maturity index and the interdependence of the composition of heavy mineral assemblages with the gross composition and texture of sandstones.– Journal of Sedimentary Research, 323, 440–450. doi: 10.1306/74d70ce5-2b21-11d7-8648000102c1865d

IVKOVIĆ, Ž., MATEJ, S. & ŠKOKO, M. (2000): Seismostratigraphic interpretation of Upper Miocene and Pliocene sediments of the Sava depression.– In: VLAHOVIĆ I. & BIONDIĆ R. (eds.): Second Croatian Geological Congress, Proceedings, Zagreb, 219–222.

JAMIČIĆ, D. (1995): The role of sinistral strike-slip faults in the formation of the structural fabric of the Slavonian Mts. (Eastern Croatia).– Geologia Croatica, 48, 155–160.

JANÁK, M., FROITZHEIM, N., LUPTÁK, B., VRABEC, M. & RAVNA, E.J.K. (2004): First evidence for ultrahigh‐pressure metamorphism of eclogites in Pohorje, Slovenia: Tracing deep continental subduction in the Eastern Alps.– Tectonics, 23/5. doi: 10.1029/2004TC001641

JANOUŠEK, V., FARROW, C.M. & ERBAN, V. (2006): Interpretation of whole-rock geochemical data in igneous geochemistry: Introducing Geochemical Data Toolkit (GCDkit).– Journal of Petrology, 47/6, 1255–1259. doi: 10.1093/petrology/egl013

JUHÁSZ, GY. (1994): Comparison of the sedimentary sequences in Late Neogene subbasins in the Pannonian Basin, Hungary [Magyarországi neogén medencerészek pannóniai s.l. üledéksorának összehasonlító elemzése – in Hungarian].– Földtani Közlöny 124/4, 341–365.

KARAMPELAS, S., HENNEBOIS, U., BERSANI, D., DELAUNVAY, A. & FRITSCH, E. (2023): Disambiguation of pyrope-rich garnet inclusions in coloured sapphires from Tanzania and identification of other inclusions by Raman spectroscopy.– Journal of Raman Spectroscopy, 54/11, 1213–1219. doi: 10.1002/jrs.6570

KOLENKOVIĆ MOČILAC, I., CVETKOVIĆ, M., SAFTIĆ, B. & RUKAVINA, D. (2022): Porosity and permeability model of a regional extending unit (Upper Miocene sandstones of the western part of Sava Depression, Croatia) based on vintage well data.– Energies, 15, 6066. doi: 10.3390/en15166066

KOVÁČ, M., NAGYMAROSY, A., OSZCZYPKO, N., SLACZKA, A., CSONTOS, L., MARUNTEANU, M., MATENCO, L. & MÁRTON, M. (1998): Palinspastic reconstruction of the Carpathian - Pannonian region during the Miocene.– In: RAKÚS M. (ed.): Geodynamic Development of the Western Carpathians. Geol. Survey of Slovak Republic, Bratislava, 189–217.

KOVÁČ, M., MÁRTON, E., OSZCZYPKO, N., VOJTKO, R., HÓK, J., KRÁLIKOVÁ, S., PLAŠIENKA, D., KLUČIAR, T., HUDÁČKOVÁ, N. & OSZCZYPKO-CLOWES, M. (2017): Neogene palaeogeography and basin evolution of the Western Carpathians, Northern Pannonian domain and adjoining areas.– Global and Planetary Change, 155, 133–154. doi: 10.1016/j.gloplacha.2017.07.004

KOVÁČ, M., HALÁSOVÁ, E., HUDÁČKOVÁ, N., HOLCOVÁ, K., HYŽNÝ, M., JAMRICH, M. & RUMAN, A. (2018): Towards better correlation of the Central Paratethys regional time scale with the standard geological
time scale of the Miocene Epoch.– Geologica Carpathica, 69/3, 283–300. doi: 10.1515/geoca-2018-0017

KOVAČIĆ, M. (2004): Sedimentologija gornjomiocenskih naslaga jugozapadnog dijela Panonskog bazena [Sedimentology of the upper Miocene deposits from the south-western part of Pannonian basin – in Croatian with an English Summary].– Unpubl. PhD. Thesis, University of Zagreb, 203 p.

KOVAČIĆ, M., ZUPANIČ, J., BABIĆ, L., VRSALJKO, D., MIKNIĆ, M., BAKRAČ, K., HEĆIMOVIĆ, I., AVANIĆ, R. & BRKIĆ, M. (2004): Lacustrine basin to delta evolution in the Zagorje Basin, a Pannonian sub-basin (Late Miocene: Pontian, NW Croatia).– Facies, 50/1, 19–33.

KOVAČIĆ, M. & GRIZELJ, A. (2006): Provenance of the Upper Miocene clastic material in the southwestern Pannonian Basin.– Geologica Carpathica, 57, 495–510.

KUHLEMANN, J., FRISCH, W., SZÉKELY, B., DUNKL, I. & KÁZMÉR, M. (2002): Post-collisional sediment budget history of the Alps: tectonic versus climatic control.– International Journal of Earth Sciences, 91/5, 818–837. doi: 10.1007/s00531-002-0266-y

LAWAN, A.Y., WORDEN, R.H., UTLEY, J.E.P. & CROWLEY, S.F. (2021): Sedimentological and diagenetic controls on the reservoir quality of marginal marine sandstones buried to moderate depths and temperatures: Brent Province, UK North Sea.– Marine and Petroleum Geology, 128, 104993. doi: 10.1016/j.marpetgeo.2021.104993

LUČIĆ, D., SAFTIĆ, B., KRIZMANIĆ, K., PRELOGOVIĆ, E., BRITVIĆ, V., MESIĆ, I. & TADEJ, J. (2001): The Neogene evolution and hydrocarbon potential of the Pannonian Basin in Croatia.– Marine and Petroleum Geology, 18, 133–147. doi: 10.1016/S0264-8172(00)00038-6

MACENIĆ, M., KUREVIJA, T. & MEDVED, I. (2020): Novel geothermal gradient map of the Croatian part of the Pannonian Basin System based on data interpretation from 154 deep exploration wells.– Renewable and Sustainable Energy Reviews, 132, 110069. doi: 10.1016/j.rser.2020.110069

MAGYAR, I., GEARY, D.H. & MÜLLER, P. (1999): Palaeogeographic evolution of the Late Miocene Lake Pannon in central Europe.– Palaeogeography, Palaeoclimatology, Palaeoecology, 147, 151–167. doi: 10.1016/S0031-0182(98)00155-2

MAGYAR, I., RADIVOJEVIĆ, D., SZTANÓ, O., SYNAK, R., UJSZÁSZI, K. & PÓCSIK, M. (2013): Progradation of the palaeo-Danube shelf margin across the Pannonian Basin during the Late Miocene and Early Pliocene.– Global and Planetary Change, 103, 168–173. doi: 10.1016/j.gloplacha.2012.06.007

MAGYAR, I. (2021): Chronostratigraphy of clinothem-filled non-marine basins: Dating the Pannonian Stage.– Global and Planetary Change, 205, 103609. doi: 10.1016/j.gloplacha.2021.103609

MALVIĆ, T. & VELIĆ, J. (2011): Neogene tectonics in Croatian part of the Pannonian Basin and reflectance in hydrocarbon accumulations.– In: SCHATTNER U. (ed.): New frontiers in tectonic research: At the midst of plate convergence.– Intech, Rijeka, 215–238.

MANDIC, O., KUREČIĆ, T., NEUBAUER, T.A. & HARZHAUSER, M. (2015): Stratigraphic and palaeogeographic significance of lacustrine molluscs from the Pliocene Viviparus beds in Central Croatia.– Geologia Croatica, 68, 179–207. doi: 10.4154/GC.2015.15

MANGE, M.A. & MAURER, H.F.W. (1992): Heavy Mineral in Colour. – Chapman and Hall, London 147 p.

MANGE, M.A & MORTON, A.C. (2007): Geochemistry of heavy minerals.– In: MANGE, M.A & WRIGHT, D.T. (eds): Heavy minerals in use. Developments in Sedimentology series, 58, 345–391. doi: 10.1016/S0070-4571(07)58013-1

MARTÍN-FERNÁNDEZ, J.A., HORN, K., TEMPL, M., FILZMOSER, P. & PALAREA-ALBALADEJO, J. (2015): Bayesian- multiplicative treatment of count zeros in compositional data sets.– Statistical Modelling, 15/2, 134–158. doi: 10.1177/1471082X14535524

MÁRTON, E., PAVELIĆ, D., TOMLJENOVIĆ, B., PAMIĆ, J. & MÁRTON, P. (1999): First Palaeomagnetic results on Ternary rocks from the Slavonian Mountains in the Southern Pannonian Basin, Croatia.– Geologica Carpathica, 50/3, 273–279.

MÁRTON, E., PAVELIĆ, D., TOMLJENOVIĆ, B., AVANIĆ, R., PAMIĆ, J. & MÁRTON, P. (2002): In the wake of a counterclockwise rotating Adriatic microplate: Neogene Palaeomagnetic results from northern Croatia.– International Journal of Earth Sciences, 91/3, 514–523. doi: 10.1007/s00531-001-0249-4

MATENCO, L.C. & RADIVOJEVIĆ, D. (2012): On the formation and evolution of the Pannonian Basin: constraints derived from the structure of the junction area between the Carpathians and Dinarides.– Tectonics, 31/6. doi: 10.1029/2012TC003206

MATOŠEVIĆ, M., MARKOVIĆ, F., BIGUNAC, D., ŠUICA, S., KRIZMANIĆ, K., PERKOVIĆ, A., KOVAČIĆ, M. & PAVELIĆ, D. (2023): Petrography of the Upper Miocene sandstones from the North Croatian Basin: Understanding the genesis of the largest reservoirs in the southwestern part of the Pannonian Basin System.– Geologica Carpathica, 74/2, 155–179. doi: 10.31577/GeolCarp.2023.06

MCLENNAN, S.M., HEMMING, S., MCDANIEL, D.K. & HANSON, G.N. (1993): Geochemical approaches to sedimentation, provenance, and tectonics.– Geological Society of America Special Paper, 284, 21–40. doi: 10.1130/SPE284-p21

MENCIN GALE, E., JAMŠEK RUPNIK, P., TRAJANOVA, M., GALE, L., BAVEC, M., ANSELMETTI, F.S. & ŠMUC, A. (2019a): Provenance and morphostratigraphy of the Pliocene-Quaternary sediments in the Celje and Drava-Ptuj Basins (eastern Slovenia).– Geologija, 62/2, 189–218. doi: 10.5474/geologija.2019.009

MENCIN GALE, E., JAMŠEK RUPNIK, P., TRAJANOVA, M., BAVEC, M., ANSELMETTI, F.S. & ŠMUC, A. (2019b): Morphostratigraphy and provenance of Plio‐Pleistocene terraces in the south‐eastern Alpine foreland: the Mislinja and Upper Savinja valleys, northern Slovenia.– Journal of Quaternary Science, 34/8, 633–649. doi: 10.1002/jqs.3156

MORTON, A.C. & HALLSWORTH, C. (2007): Stability of detrital heavy minerals during burial diagenesis.– developments in sedimentology, 58, 215–245. doi: 10.1016/S0070-4571(07)58007-6

NESBITT, H.W. & YOUNG, G.M. (1982): Early Proterozoic climates and plate motions inferred from major element chemistry of lutites.– Nature, 299, 715–717. doi: 10.1038/299715a0

NOVAK ZELENIKA, K., MALVIĆ, T. & GEIGER, J. (2010): Mapping of the Late Miocene sandstone facies using indicator kriging.– Nafta, 61/5, 225–233.

PAMIĆ, J. (1986): Magmatic and metamorphic complexes of the adjoining area of the northernmost Dinarides and Pannonian Mass.– Acta Geologica Hungarica, 29, 203–220.

PAMIĆ, J. (1999): Kristalinska podloga južnih dijelova Panonskog bazena – temeljena na površinskim i bušotinskim podacima.– Nafta, 50/9, 291–310.

PAVELIĆ, D. (2001): Tectonostratigraphic model for the North Croatian and North Bosnian sector of the Miocene Pannonian Basin System.– Basin Research, 13, 359–376. doi: 10.1046/j.0950-091x.2001.00155.x

PAVELIĆ, D. & KOVAČIĆ, M. (2018): Sedimentology and stratigraphy of the Neogene rift-type North Croatian Basin (Pannonian Basin System, Croatia): A review.– Marine and Petroleum Geology, 91, 455–469. doi: 10.1016/j.marpetgeo.2018.01.026

PAWLOWSKY-GLAHN, V., EGOZCUE, J.J. & LOVELL, D. (2015): Tools for compositional data with a total.– Statistical Modelling, 15/2, 175–190. doi: 10.1177/1471082X14535526

PETTIJOHN, F.J., POTTER, P.E. & SIEVER, R. (1987): Sand and sandstone.– 2nd edition, Springer, New York, 553 p.
doi: 10.1007/978-1-4612-1066-5

PILLER, W., HARZHAUSER, M. & MANDIC, O. (2007): Miocene Central Paratethys stratigraphy – current status and future directions.– Stratigraphy, 4, 151–168. doi: 10.29041/strat.04.2.09

RAZUM, I., LUŽAR-OBERITER, B., ZACCARINI, F., BABIĆ, L., MIKO, S., HASAN, O., ILIJANIĆ, N., BEQIRAJ, E. & PAWLOWSKYGLAHN, V. (2021): New sediment provenance approach based on orthonormal log ratio transformation of geochemical and heavy mineral data: Sources of eolian sands from the southeastern Adriatic archipelago.– Chemical Geology, 583, 120451. doi: 10.1016/j.chemgeo.2021.120451

RAZUM, I., RUBINIĆ, V., MIKO, S., RUŽIČIĆ, S. & DURN, G. (2023): Coherent provenance analysis of terra rossa from the northern Adriatic based on heavy mineral assemblages reveals the emerged Adriatic shelf as the main recurring source of siliciclastic material for their formation.– Catena, 226, 107083. doi: 10.1016/j.catena.2023.107083

RÖGL, F. & STEININGER, F.F. (1983): Vom Zerfall der Tethys zu Mediterran und Paratethys. Die Neogene Palaeogeographie und Palinspastik des zirkum- mediterranen Raumes.– Annalen des Naturhistorischen Museum
in Wien, 85 A, 135–163.

RÖGL, F. (1998): Palaeogeographic considerations for Mediterranean and Paratethys seaways (Oligocene to Miocene).– Annalen des Naturhistorischen Museum in Wien, 99 A, 279–310.

ROSER, B.P. & KORSCH, R.J. (1988): Provenance signatures of sandstone-mudstone suites using discriminant function analysis of major-element dana. Chemical Geology 67, 119–139.

ROYDEN, L.H. (1988): Late cenozoic tectonics of the Pannonian Basin System.– In: ROYDEN L.H. & HORVÁTH F. (eds.): The Pannonian Basin: A Study in Basin Evolution. AAPG Memoir, 45, 27–48. doi: 10.1306/M45474C3

RUKAVINA, D., SAFTIĆ, B., MATOŠ, B., KOLENKOVIĆ MOČILAC, I., PREMEC FUČEK, V. & CVETKOVIĆ, M. (2023): Tectonostratigraphic analysis of the syn-rift infill in the Drvaa Basin, southwestern Pannonian Basin System.– Marine and Petroleum Geology, 152, 106235. doi: 10.1016/j.marpetgeo.2023.106235

SAFTIĆ, B., VELIĆ, J., SZTANÓ, O., JUHÁSZ, GY. & IVKOVIĆ, Ž. (2003): Tertiary subsurface facies, source rocks and hydrocarbon reservoirs in the SW part of the Pannonian Basin (northern Croatia and south-western Hungary).– Geologia Croatica, 56, 101–122.

SCHMID, S.M., BERNOULLI, D., FÜGENSCHUH, B., MATENCO, L., SCHEFER, S., SCHUSTER, R., TISCHLER, M. & USTASZEWSKI, K. (2008): The Alpine-Carpathian-Dinaridic orogenic system: correlation and evolution of tectonic units.– Swiss Journal of Geosciences, 101, 139–183. doi: 10.1007/s00015-008-1247-3

SCHMID, S.M., FÜGENSCHUH, B., KOUNOV, A., MATENCO, L., NIEVERGELT, P., OBERHÄNSLI, R., PLEUGER, J., SCHEFER, S., SCHUSTER, R., TOMLJENOVIĆ, B., USTASZEWSKI, K. & VAN HINSBERGEN, D.J.J. (2020): Tectonic units of the Alpine collision zone between Eastern Alps and western Turkey.– Gondwana Research, 78, 308–374. doi: 10.1016/j.gr.2019.07.005

SCHUSTER, R., KURZ, W., KRENN, K. & FRITZ, H. (2013): Introduction to the Geology of the Eastern Alps.– Berichte de Geologischen Bundes- Anstalt Wien, 99, 121–133.

SEBE, K., KOVAČIĆ, M., MAGYAR, I., KRIZMANIĆ, K., ŠPELIĆ, M., BIGUNAC, D., SÜTŐ-SZENTAI, M., KOVÁCS, Á., SZUROMI-KORECZ, A., BAKRAČ, K., HAJEK-TADESSE, V., TROSKOT-ČORBIĆ, T. & SZTANÓ, O. (2020): Correlation of upper Miocene-Pliocene Lake Pannon deposits across the Drava Basin, Croatia and Hungary.– Geologia Croatica, 73/3, 177–195. doi: 10.4154/gc.2020.12

SNEIDER, R.M. (1990): Reservoir Description of Sandstones.– In: BARWIS J.H., MCPHERSON J.G. & STUDLICK J.R.J. (eds.): Sandstone Petroleum Reservoirs. Casebooks in Earth Sciences. Springer, New York, 1–3. doi: 10.1007/978-1-4613-8988-0_1

STEININGER, F.F. & RÖGL, F. (1979): The Paratethys history – a contribution towards the Neogene geodynamics of the Alpine Orogene (an abstract).– Ann. Géol. Pays Hellén., Tome hors serie, fasc. III, 1153–1165, Athens.

SZTANÓ, O., SZAFIÁN, P., MAGYAR, I., HORÁNYI, A., BADA, G., HUGHES, D.W., HOYER, D.L. & WALLIS, R.J. (2013): Aggradation and progradation controlled clinothems and deepwater sand delivery model in the Neogene Lake Pannon, Makó Trough, Pannonian Basin, SE Hungary.– Global and Planetary Change, 103, 149–167. doi: 10.1016/j.gloplacha.2012.05.026

SZTANÓ, O., SEBE, K., CSILLAG, G. & MAGYAR, I. (2015): Turbidites as indicators of Palaeotopography, Upper Miocene Lake Pannon, Western Mecsek Mountains (Hungary).– Geologica Carpathica, 66, 331–344. doi: 10.1515/geoca-2015-0029

ŠĆAVNIČAR, B. (1979): Pješčenjaci pliocena i miocena Savske potoline (Sandstones of the Pliocene and Miocene age in the Sava river depression).– Zbornik radova 3. god. naučni skup Sekcije za primjenu geol. geofiz. geokem. Znan. savjeta za naftu, Novi Sad (1977), 2, 351–382.

ŠPELIĆ, M., KOVÁCS, Á., SAFTIĆ, B. & SZTANÓ, O. (2023): Competition of deltaic feeder systems reflected by slope progradation: a high-resolution example from the Late Miocene-Pliocene, Drava Basin, Croatia.– International Journal of Earth Sciences, 112, 1023–1041. doi: 10.1007/s00531-023-02290-w

ŠUICA, S., GARAŠIĆ, V. & WOODLAND, A.B. (2022a): Petrography and geochemistry of granitoids and related rocks from the pre-Neogene basement of the Slavonia–Srijem Depression (Croatia).– Geologia Croatica, 75, 129–144. doi: 10.4154/gc.2022.09

ŠUICA, S., TAPSTER, S.R., MIŠUR, I. & TRINAJSTIĆ, N. (2022b): The Late Cretaceous syenite from the Sava suture zone (eastern Croatia).– In: XXII International Congress of the CBGA, Plovdiv, Bulgaria, 7–11 September 2022, Abstracts, 100.

TARI, G., HORVÁTH, F. & RUMPLER, J. (1992): Styles of extension in the Pannonian Basin.– Tectonophysics, 208, 203–219. doi: 10.1016/0040-1951(92)90345-7

TAYLOR, S.R. & MCLENNAN, S.M. (1985): The continental crust: its composition and evolution.– Blackwell Science, Oxford, 315 p.

TER BORGH, M., VASILIEV, I., STOICA, M., KNEŽEVIĆ, S., MATENCO, L., KRIJGSMAN, W., RUNDIĆ, LJ. & CLOETINGH, S. (2013): The isolation of the Pannonian basin (Central Paratethys): New constrains from magnetostratigraphy and biostratigraphy.– Global and Planetary Change, 103, 99–118. doi: 10.1016/j.gloplacha.2012.10.001

TOMLJENOVIĆ, B. & CSONTOS, L. (2001): Neogene-Quaternary structures in the border zone between Alps, Dinarides and Pannonian Basin (Hrvatsko zagorje and Karlovac basins, Croatia).– International Journal of Earth Sciences, 90, 560–578. doi: 10.1007/s005310000176

TUSCHL, M., KUREVIJA, T., KRPAN, M. & MACENIĆ, M. (2022): Overview of the current activities related to deep geothermal energy utilisation in the Republic of Croatia.– Clean Technologies and Environmental Policy, 24, 3003–3031. doi: 10.1007/s10098-022-02383-1

VELIĆ, J., MALVIĆ, T., CVETKOVIĆ, M. & VRBANAC, B. (2012): Reservoir geology, hydrocarbon reserves and production in the Croatian part of the Pannonian Basin System.– Geologia Croatica, 65, 91–101. doi: 10.4154/GC.2012.07

VERMEESCH, P., RESENTINI, A. & GARZANTI, E. (2016): An R package for statistical provenance analysis.– Sedimentary Geology, 336, 14–25. doi: 10.1016/j.sedgeo.2016.01.009

VERMEESCH, P. (2018): Statistical models for point-counting data.– Earth and Planetary Science Letters, 501, 112–118. doi:10.1016/j.epsl.2018.08.019

VRBANAC, B., VELIĆ, J. & MALVIĆ, T. (2010): Sedimentation of deep-water turbidites in the SW part of the Pannonian Basin.– Geologica Carpathica, 61/1, 55–69. doi: 10.2478/v10096-010-0001-8

WORDEN, R.H., MAYALL, M.J. & EVANS, I.J. (1997): Predicting reservoir quality during exploration: lithic grains, porosity and permeability in Tertiary clastic rocks of the South China Sea Basin.– Geological Society of London, Special Publications, 126, 107–115. doi: 10.1144/GSL.SP.1997.126.01.08

WORDEN, R.H. & BUREY, S.D. (2003): Sandstone diagenesis: the evolution of sand to stone.– In: BURLEY, S.D & WORDEN, R.H. (eds.): Sandstone Diagenesis: Recent and Ancient.– International Association of Sedimentologists,
4, 3–44.

WORDEN, R.H., ARMITAGE, P.J., BUTCHER, A.R., CHURCHILL, J.M., CSOMA, A.E., HOLLIS, C., LANDER, R.H. & OMMA, J.E. (2018): Petroleum reservoir quality prediction: Overview and contrasting approaches from sandstone and carbonate communities.– Geological Society of London, Special Publications, 435, 1–31. doi: 10.1144/SP435.21