The Alps as the main source of sand for the Late Miocene Lake Pannon (Pannonian Basin, Croatia)

Main Article Content

Mario Matošević
Eduardo Garzanti
Sanja Šuica
Danilo Bersani
Frane Marković
Ivan Razum
Anita Grizelj
Krešimir Petrinjak
Marijan Kovačić
Davor Pavelić

Abstract

The provenance of the Upper Miocene sandstones from the Sava and Drava depressions of the North Croatian Basin was investigated using petrographic, geochemical, and heavy mineral analyses, including Raman spectroscopy. The study of these sandstones, which represent important oil and gas reservoirs in Croatia, allowed reconstruction of the Late Miocene source-to-sink model of the Lake Pannon drainage system and the evolution of the southwestern Pannonian Basin. The studied feldspatho-litho-quartzose sandstones consist of a mixture of sedimentary, metamorphic, and igneous detritus. Heavy-mineral assemblages are dominated by almandine-rich garnet with apatite, epidote, tourmaline, rutile, zircon, staurolite, and zoisite, indicative of low to medium-grade metamorphic source rocks. Higher concentrations of Ca and Mg than in the Upper Continental Crust standard (UCC) additionally reflect the abundance of limestone and dolostone rock fragments as well as carbonate cement. Geochemical compositional variations between sandstone samples from the Sava and Drava depressions primarily stem from diagenetic processes. CIX and alpha values indicate only minor weathering. Compositional features indicate an orogenic source located in the Eastern Alps and primarily represented by Austroalpine and Penninic nappes. This research offers a novel perspective to distinguish the Upper Miocene  reservoirs from other sedimentary units within the basin, contributing to a more comprehensive understanding  of the regional geological dynamics and supporting future exploration projects also related to energy transition.

Downloads

Download data is not yet available.

Article Details

Section
Original Scientific Papers

References

AITCHISON, J. (1986): The Statistical Analysis of Compositional Data.– Chapman
and Hall, London, 416 p. doi: 10.1007/978-94-009-4109-0
ALCALDE, J., HEINEMANN, N., MABON, L., WORDEN, R.H., DE CONINCK,
H., ROBERTSON, H., MAVER, M., GHANBARI, S.,
SWENNENHUIS, F., MANN, I., WALKER, T., GOMERSAL, S.,
BOND, C.E., ALLEN, M.J., HASZELDINE, R.S., JAMES, A., MACKAY,
E.J., BROWNSORT, P.A., FAULKER, D.R. & MURPHY, S.
(2019): Acorn: Developing full-chain industrial carbon capture and storage
in a resource- and infrastructure-rich hydrocarbon province.– Journal
of Cleaner Production, 233, 963–971. doi: 10.1016/j.jcanlepro.
2019.06.087
AMOROSI, A., SAMMARTINO, I., DINELLI, E., CAMPO, B., GUERCIA,
T., TRINCARDI, F. & PELLEGRINI, C. (2022): Provenance and sediment
dispersal in the Po-Adriatic source-to-sink system unraveled by
bulk-sediment geochemistry and its linkage to catchment geology.– Earth-
Science Reviews, 104202. doi: 10.1016/j.earscirev.2022.104202
ANĐELKOVIĆ, F. & RADIVOJEVIĆ, D. (2021): The Serbian Lake Pannon
formations - their significance and interregional correlation.– Geološki
anali Balkanskog poluostrva, 82/2, 43–67. doi: 10.2298/GABP210420007A
ARATÓ R., OBBÁGY, G., DUNKL, I., JÓZSA, S., LÜNSDORF, K., SZEPESI,
J., MOLNÁR, K., BENKÓ, Z. & VON EYNATTEN, H. (2021):
Multi-method comparison of modern river sediments in the Pannonian
Basin System – A key step towards understanding the provenance of sedimentary
basin-fill.– Global and Planetary Change, 199, 103446. doi:
10.1016/j.gloplacha.2021.103446
ASCH, K. (2003): The 1:5 million international geological map of Europe and
adjacent areas: development and implementation of a GIS-enabled concept.–
Geological Yearbook, SA 3, BGR, Hannover, 172 p.
AUBRECHT, R., MERES, Š., SYKORA, M. & MIKUŠ, T. (2009): Provenance
of the detrital garnets and spinels from the Albian sediments of the
Czorsztyn Unit (Pieniny Klippen Belt, Western Carpathians, Slovakia).–
Geologica Carpathica, 60/6, 463–483. doi: 10.2478/v10096-009-0034-z
BALÁZS, A., MATENCO, L., MAGYAR, I., HORVÁTH, F. & CLOETINGH,
S. (2016): The link between tectonics and sedimentation in back-arc
basins:
New genetic constraints from the analysis of the Pannonian
Basin.–
Tectonics, 35, 1526–1559. doi: 10.1002/2015TC004109
BALÁZS, A. (2017): Dynamic model for the formation and evolution of the
Pannonian Basin: The link between tectonics and sedimentation.– Utrecht
Stud. Earth Sciences, 132, 153.
BALÁZS, A., MAGYAR, I., MATENCO, L., SZTANÓ, O., TŐKÉS, L. &
HORVÁTH, F. (2018): Morphology of a large Palaeo-lake: Analysis of
compaction in the Miocene-Quaternary Pannonian Basin.– Global and
Planetary Change, 171, 134–147. doi: 10.1016/j.gloplacha.2017.10.012
BÁLDI, T. (1980): A korai Paratethys története.– Földtani Közlöny, 110,
456–
472.
BASCH, O., PAVELIĆ, D. & BAKRAČ, K. (1995): Gornjopontski facijesi
sjevernog krila Konjšćinske sinklinale kod Huma Zabočkog (Hrvatsko
Zagorje).– In: VLAHOVIĆ, I., VELIĆ, I. & ŠPARICA, M. (eds.): First
Croatian geological congress, Proceedings. Institute of Geology, Croatian
Geological society, Zagreb, 57–61.
BERSANI, D., ANDÒ, S., VIGNOLA, P., MOLTIFIORI, G., MARINO, I.G.,
LOTTICI, P.P. & DIELLA, V. (2009): Micro-Raman spectroscopy as a
routine tool for garnet analysis. Spectrochimica Acta Part A: Molecular
and Biomolecular Spectroscopy, 73/3, 484–491. doi: 10.1016/j.
saa.2008.11.033
BHATIA, M. (1983): Plate tectonics and geochemical composition of sandstones.–
The Journal of Geology, 91, 611–627. doi: 10.1086/628815
BHATIA, M. & CROOK, K.A.W. (1986): Trace element characteristicsof
graywackes and tectonic setting discrimination of sedimentary basins.
Contributions to Mineralogy and Petrology 92, 181–193.
BIGUNAC, D. (2022): Depositional environments and subsurface settings of
the Lower Miocene sediments in the Slavonia-Srijem, Drava and Sava
Depressions.– Dissertation, Faculty of mining, geology and petroleum
engineering, University of Zagreb.
BOUSQUET, R., OBERHÄNSLI, R., SCHMID, S.M., BERGER, A., WIEDERKEHR,
M., ROBERT, C., MÖLLER, A., ROSENBERG, C.,
KOLLER, F., MOLLI, G. & ZEILINGER, G. (2012): Metamorphic framework
of the Alps.– Comision for the Geological Map of the World
(CCGM/CGMW).
BOYNTON, W.V. (1984): Cosmochemistry of the Rare Earth Elements: Meteorite
Studies.– In: HENDERSON P. (ed.): Rare Earth Element Geochemistry.–
Elsevier, Amsterdam, 63–114. doi: 10.1016/B978-0-444-
42148-7.50008-3
DICKINSON, W.R. (1985): Interpreting provenance relations from detrital
modes of sandstones.– In: ZUFFA G.G. (ed.): Provenance of arenites.–
Reidel, Dordrecht, NATO ASI Series, 148, 333–361. doi: 10.1007/978-
94-017-2809-6_15
DOLTON, L.G. (2006): Pannonian Basin Province, Central Europe (Province
4808) – Petroleum geology, total petroleum systems, and petroleum resource
assessment.– U.S. Geological Survey, Bulletin 2204-B. doi:
10.3133/b2204B
EGOZCUE, J.J., PAWLOWSKY-GLAHN, V., MATEU-FIGUERAS, G. &
BARCELO-VIDAL, C. (2003): Isometric Logratio Transformations for
Compositional Data Analysis.– Mathematical Geology, 35/3, 279–300.
doi: 10.1023/A:1023818214614
EGOZCUE, J.J. & PAWLOWSKY-GLAHN, V. (2005): CoDa-dendrogram:
A new exploratory tool.– In: Compositional Data Analysis Workshop –
CoDaWork’05, Proceedings, 1–10.
GARZANTI, E., RESENTINI, A., VEZZOLI, G., ANDÒ, S., MALUSÀ,
M.G., PADOAN, M. & PAPARELLA, P. (2010): Detrital fingerprints of
fossil continental-subduction zones (Axial Belt Provenance, European
Alps).– The Journal of Geology, 118/4, 341–362. doi: 10.1086/652720
GARZANTI, E., PADOAN, M., ANDÒ, S., RESENTINI, A., VEZZOLI, G.
& LUSTRINO, M. (2013): Weathering and relative durability of detrital
minerals in equatorial climate: sand petrology and geochemistry in the
East African Rift.– The Journal of Geology, 121/6, 547–580. doi:
10.1086/673259
GARZANTI, E., PADOAN, M., SETTI, M., LÓPEZ-GALINDO, A. & VILLA,
I.M. (2014): Provenance versus weathering control on the composition
of tropical river mud (southern Africa).– Chemical Geology, 366,
61–74. doi: 10.1016/j.chemgeo.2013.12.016
GARZANTI, E. (2016): From static to dynamic provenance analysis – Sedimentary
petrology upgraded.– In: CARACCIOLO, L., GARZANTI, E.,
VON EYNATTEN, H. & WELTJE, G.J. (eds.): Sediment generation and
provenance: processes and pathways.– Sedimentary Geology, 336, 3–13.
doi: 10.1016/j.sedgeo.2015.07.010
GARZANTI, E. (2017): The maturity myth in sedimentology and provenance
analysis.– Journal of Sedimentary Research, 87/4, 353–365. doi: 10.2110/
jsr.2017.17
GARZANTI, E., ANDÒ, S., LIMONTA, M., FIELDING, L. & NAJMAN,
Y. (2018): Diagenetic control on mineralogical suites in sand, silt, and
mud (Cenozoic Nile Delta): Implications for provenance reconstructions.–
Earth-Science Reviews, 185, 122–139. doi: 10.1016/j.earscirev.
2018.05.010
GARZANTI, E. (2019): Petrographic classification of sand and sandstone.–
Earth-Science Reviews, 192, 545–563. doi: 10.1016/j.earscirev.
2018.12.014
GRIZELJ, A., TIBLJAŠ, D. & KOVAČIĆ, M. (2007): Mineralogy and geochemistry
of Upper Miocene pelitic sediments of Zagorje Basin (Croatia):
Implications for evolution of Pannonian Basin.– Geologica Carpathica,
58/3, 263–276.
GRIZELJ, A., TIBLJAŠ, D., KOVAČIĆ, M. & ŠPANIĆ, D. (2011): Diagenesis
of Miocene pelitic sedimentary rocks in the Sava Depression (Croatia).–
Clay Minerals, 46/1, 59–72. doi: 10.1180/claymin.2011.046.1.59
GRIZELJ, A., PEH, Z., TIBLJAŠ, D., KOVAČIĆ, M. & KUREČIĆ, T. (2017):
Mineralogical and geochemical characteristics of Miocene pelitic sedimentary
rocks from the south-western part of the Pannonian Basin
System (Croatia): Implications for provenance studies.– Geoscience
Frontiers, 8/1, 65–80. doi: 10.1016/j.gsf.2015.11.009
HARZHAUSER, M., LATAL, C. & PILLER, W. (2007): The stable isotope
archive of Lake Pannon as a mirror of Late Miocene climate change.–
Palaeogeography, Palaeoclimatology, Palaeoecology, 249, 335–350. doi:
10.1016/j.palaeo.2007.02.006
HARZHAUSER, M. & PILLER, W.E. (2007): Benchmark data of a changing
sea – palaeogeography, palaeobiogeography and events in the Central
Paratethys during the Miocene.– Palaeogeography, Palaeoclimatology,
Palaeoecology, 253, 8–31. doi: 10.1016/j.palaeo.2007.03.031
HARZHAUSER, M. & MANDIC, M. (2008): Neogene lake systems of the
Central and South-Eastern Europe – faunal diversity, gradients and interrelations.–
Palaeogeography, Palaeoclimatology, Palaeoecology, 260,
417–434. doi: 10.1016/j.palaeo.2007.12.013
HAUKE, M., FROITZHEIM, N., NAGEL, T.J., MILADINOVA, I., FASSMER,
K., FONSECA, R.O.C., SPRUNG, P. & MÜNKER, C. (2019):
Two high-pressure metamorphic events, Variscan and Alpine, dated by
Lu–Hf in an eclogite complex of the Austroalpine nappes (Schobergruppe,
Austria).– International Journal of Earth Sciences (Geol Rundsch),
108, 1317–1331. doi: 10.1007/s00531-019-01708-8
HORVÁTH, F. (1993): Towards a mechanical model for the formation of the
Pannonian Basin.– Tectonophysics, 226, 333–357. doi: 10.1016/0040-
1951(93)90126-5
HORVÁTH, F. (1995): Phases of compression during the evolution of the Pannonian
Basin and its bearing on hydrocarbon exploration.– Marine and Petroleum
Geology, 12, 837–844. doi: 10.1016/0264-8172(95)98851-U
HORVÁTH, F., MUSITZ, B., BALÁZS, A., VEGH, A., UHRIN, A., NADOR,
A., KOROKNAI, B., PAP, N., TOTH, T. & WORUM, G. (2015): Evolution
of the Pannonian basin and its geothermal resources.– Geothermics,
53, 328–352. doi: 10.1016/j.geothermics.2014.07.009
HUBERT, J.F. (1962): A zircon-tourmaline-rutile maturity index and the interdependence
of the composition of heavy mineral assemblages with
the gross composition and texture of sandstones.– Journal of Sedimentary
Research, 323, 440–450. doi: 10.1306/74d70ce5-2b21-11d7-
8648000102c1865d
IVKOVIĆ, Ž., MATEJ, S. & ŠKOKO, M. (2000): Seismostratigraphic interpretation
of Upper Miocene and Pliocene sediments of the Sava depression.–
In: VLAHOVIĆ I. & BIONDIĆ R. (eds.): Second Croatian Geological
Congress, Proceedings, Zagreb, 219–222.
JAMIČIĆ, D. (1995): The role of sinistral strike-slip faults in the formation of
the structural fabric of the Slavonian Mts. (Eastern Croatia).– Geologia
Croatica, 48, 155–160.
JANÁK, M., FROITZHEIM, N., LUPTÁK, B., VRABEC, M. & RAVNA,
E.J.K. (2004): First evidence for ultrahigh‐pressure metamorphism of
eclogites in Pohorje, Slovenia: Tracing deep continental subduction in
the Eastern Alps.– Tectonics, 23/5. doi: 10.1029/2004TC001641
JANOUŠEK, V., FARROW, C.M. & ERBAN, V. (2006): Interpretation of
whole-rock geochemical data in igneous geochemistry: Introducing
Geochemical Data Toolkit (GCDkit).– Journal of Petrology, 47/6, 1255–
1259. doi: 10.1093/petrology/egl013
JUHÁSZ, GY. (1994): Comparison of the sedimentary sequences in Late Neogene
subbasins in the Pannonian Basin, Hungary [Magyarországi
neogén
medencerészek pannóniai
s.l. üledéksorának összehasonlító
elemzése – in Hungarian].– Földtani Közlöny 124/4, 341–365.
KARAMPELAS, S., HENNEBOIS, U., BERSANI, D., DELAUNVAY, A. &
FRITSCH, E. (2023): Disambiguation of pyrope-rich garnet inclusions
in coloured sapphires from Tanzania and identification of other inclusions
by Raman spectroscopy.– Journal of Raman Spectroscopy, 54/11,
1213–1219. doi: 10.1002/jrs.6570
KOLENKOVIĆ MOČILAC, I., CVETKOVIĆ, M., SAFTIĆ, B. & RUKAVINA,
D. (2022): Porosity and permeability model of a regional extending
unit (Upper Miocene sandstones of the western part of Sava Depression,
Croatia) based on vintage well data.– Energies, 15, 6066. doi: 10.3390/
en15166066
KOVÁČ, M., NAGYMAROSY, A., OSZCZYPKO, N., SLACZKA, A., CSONTOS,
L., MARUNTEANU, M., MATENCO, L. & MÁRTON, M.
(1998): Palinspastic reconstruction of the Carpathian - Pannonian region
during the Miocene.– In: RAKÚS M. (ed.): Geodynamic Development
of the Western Carpathians. Geol. Survey of Slovak Republic, Bratislava,
189–217.
KOVÁČ, M., MÁRTON, E., OSZCZYPKO, N., VOJTKO, R., HÓK, J.,
KRÁLIKOVÁ, S., PLAŠIENKA, D., KLUČIAR, T., HUDÁČKOVÁ, N.
& OSZCZYPKO-CLOWES, M. (2017): Neogene palaeogeography and
basin evolution of the Western Carpathians, Northern Pannonian domain
and adjoining areas.– Global and Planetary Change, 155, 133–154. doi:
10.1016/j.gloplacha.2017.07.004
KOVÁČ, M., HALÁSOVÁ, E., HUDÁČKOVÁ, N., HOLCOVÁ, K., HYŽNÝ,
M., JAMRICH, M. & RUMAN, A. (2018): Towards better correlation of
the Central Paratethys regional time scale with the standard geological
time scale of the Miocene Epoch.– Geologica Carpathica, 69/3, 283–300.
doi: 10.1515/geoca-2018-0017
KOVAČIĆ, M. (2004): Sedimentologija gornjomiocenskih naslaga jugozapadnog
dijela Panonskog bazena [Sedimentology of the upper Miocene deposits
from the south-western part of Pannonian basin – in Croatian with
an English Summary].– Unpubl. PhD. Thesis, University of Zagreb,
203 p.
KOVAČIĆ, M., ZUPANIČ, J., BABIĆ, L., VRSALJKO, D., MIKNIĆ, M.,
BAKRAČ, K., HEĆIMOVIĆ, I., AVANIĆ, R. & BRKIĆ, M. (2004): Lacustrine
basin to delta evolution in the Zagorje Basin, a Pannonian
sub-basin (Late Miocene: Pontian, NW Croatia).– Facies, 50/1, 19–33.
KOVAČIĆ, M. & GRIZELJ, A. (2006): Provenance of the Upper Miocene
clastic material in the southwestern Pannonian Basin.– Geologica Carpathica,
57, 495–510.
KUHLEMANN, J., FRISCH, W., SZÉKELY, B., DUNKL, I. & KÁZMÉR,
M. (2002): Post-collisional sediment budget history of the Alps: tectonic
versus climatic control.– International Journal of Earth Sciences, 91/5,
818–837. doi: 10.1007/s00531-002-0266-y
LAWAN, A.Y., WORDEN, R.H., UTLEY, J.E.P. & CROWLEY, S.F. (2021):
Sedimentological and diagenetic controls on the reservoir quality of marginal
marine sandstones buried to moderate depths and temperatures:
Brent Province, UK North Sea.– Marine and Petroleum Geology, 128,
104993. doi: 10.1016/j.marpetgeo.2021.104993
LUČIĆ, D., SAFTIĆ, B., KRIZMANIĆ, K., PRELOGOVIĆ, E., BRITVIĆ,
V., MESIĆ, I. & TADEJ, J. (2001): The Neogene evolution and hydrocarbon
potential of the Pannonian Basin in Croatia.– Marine and Petroleum
Geology, 18, 133–147. doi: 10.1016/S0264-8172(00)00038-6
MACENIĆ, M., KUREVIJA, T. & MEDVED, I. (2020): Novel geothermal
gradient map of the Croatian part of the Pannonian Basin System based
on data interpretation from 154 deep exploration wells.– Renewable and
Sustainable Energy Reviews, 132, 110069. doi: 10.1016/j.rser.2020.110069
MAGYAR, I., GEARY, D.H. & MÜLLER, P. (1999): Palaeogeographic evolution
of the Late Miocene Lake Pannon in central Europe.– Palaeogeography,
Palaeoclimatology, Palaeoecology, 147, 151–167. doi: 10.1016/
S0031-0182(98)00155-2
MAGYAR, I., RADIVOJEVIĆ, D., SZTANÓ, O., SYNAK, R., UJSZÁSZI,
K. & PÓCSIK, M. (2013): Progradation of the Palaeo-Danube shelf margin
across the Pannonian Basin during the Late Miocene and Early Pliocene.–
Global and Planetary Change, 103, 168–173. doi: 10.1016/j.gloplacha.
2012.06.007
MAGYAR, I. (2021): Chronostratigraphy of clinothem-filled non-marine basins:
Dating the Pannonian Stage.– Global and Planetary Change, 205,
103609. doi: 10.1016/j.gloplacha.2021.103609
MALVIĆ, T. & VELIĆ, J. (2011): Neogene tectonics in Croatian part of the
Pannonian Basin and reflectance in hydrocarbon accumulations.– In:
SCHATTNER U. (ed.): New frontiers in tectonic research: At the midst
of plate convergence.– Intech, Rijeka, 215–238.
MANDIC, O., KUREČIĆ, T., NEUBAUER, T.A. & HARZHAUSER, M.
(2015): Stratigraphic and palaeogeographic significance of lacustrine
molluscs from the Pliocene Viviparus beds in Central Croatia.– Geologia
Croatica, 68, 179–207. doi: 10.4154/GC.2015.15
MANGE, M.A. & MAURER, H.F.W. (1992): Heavy Mineral in Colour. – Chapman
and Hall, London 147 p.
MANGE, M.A & MORTON, A.C. (2007): Geochemistry of heavy minerals.–
In: MANGE, M.A & WRIGHT, D.T. (eds): Heavy minerals in use. Developments
in Sedimentology series, 58, 345–391. doi: 10.1016/S0070-
4571(07)58013-1
MARTÍN-FERNÁNDEZ, J.A., HORN, K., TEMPL, M., FILZMOSER, P. &
PALAREA-ALBALADEJO, J. (2015): Bayesian-multiplicative treatment
of count zeros in compositional data sets.– Statistical Modelling,
15/2, 134–158. doi: 10.1177/1471082X14535524
MÁRTON, E., PAVELIĆ, D., TOMLJENOVIĆ, B., PAMIĆ, J. & MÁRTON,
P. (1999): First Palaeomagnetic results on Ternary rocks from the Slavonian
Mountains in the Southern Pannonian Basin, Croatia.– Geologica
Carpathica, 50/3, 273–279.
MÁRTON, E., PAVELIĆ, D., TOMLJENOVIĆ, B., AVANIĆ, R., PAMIĆ, J.
& MÁRTON, P. (2002): In the wake of a counterclockwise rotating
Adriatic microplate: Neogene Palaeomagnetic results from northern Croatia.–
International Journal of Earth Sciences, 91/3, 514–523. doi:
10.1007/s00531-001-0249-4
MATENCO, L.C. & RADIVOJEVIĆ, D. (2012): On the formation and evolution
of the Pannonian Basin: constraints derived from the structure of
the junction area between the Carpathians and Dinarides.– Tectonics,
31/6. doi: 10.1029/2012TC003206
MATOŠEVIĆ, M., MARKOVIĆ, F., BIGUNAC, D., ŠUICA, S., KRIZMANIĆ,
K., PERKOVIĆ, A., KOVAČIĆ, M. & PAVELIĆ, D. (2023): Petrography
of the Upper Miocene sandstones from the North Croatian Basin:
Understanding the genesis of the largest reservoirs in the southwestern
part of the Pannonian Basin System.– Geologica Carpathica, 74/2, 155–
179. doi: 10.31577/GeolCarp.2023.06
MCLENNAN, S.M., HEMMING, S., MCDANIEL, D.K. & HANSON, G.N.
(1993): Geochemical approaches to sedimentation, provenance, and tectonics.–
Geological Society of America Special Paper, 284, 21–40. doi:
10.1130/SPE284-p21
MENCIN GALE, E., JAMŠEK RUPNIK, P., TRAJANOVA, M., GALE, L.,
BAVEC, M., ANSELMETTI, F.S. & ŠMUC, A. (2019a): Provenance and
morphostratigraphy of the Pliocene-Quaternary sediments in the Celje
and Drava-Ptuj Basins (eastern Slovenia).– Geologija, 62/2, 189–218.
doi: 10.5474/geologija.2019.009
MENCIN GALE, E., JAMŠEK RUPNIK, P., TRAJANOVA, M., BAVEC, M.,
ANSELMETTI, F.S. & ŠMUC, A. (2019b): Morphostratigraphy and provenance
of Plio‐Pleistocene terraces in the south‐eastern Alpine foreland:
the Mislinja and Upper Savinja valleys, northern Slovenia.– Journal
of Quaternary Science, 34/8, 633–649. doi: 10.1002/jqs.3156
MORTON, A.C. & HALLSWORTH, C. (2007): Stability of detrital heavy
minerals during burial diagenesis.– Developments in sedimentology, 58,
215–245. doi: 10.1016/S0070-4571(07)58007-6
NESBITT, H.W. & YOUNG, G.M. (1982): Early Proterozoic climates and plate
motions inferred from major element chemistry of lutites.– Nature,
299, 715–717. doi: 10.1038/299715a0
PAMIĆ, J. (1986): Magmatic and metamorphic complexes of the adjoining
area of the northernmost Dinarides and Pannonian Mass.– Acta Geologica
Hungarica, 29, 203–220.
NOVAK ZELENIKA, K., MALVIĆ, T. & GEIGER, J. (2010): Mapping of the
Late Miocene sandstone facies using indicator kriging.– Nafta, 61/5,
225–233.
PAMIĆ, J. (1999): Kristalinska podloga južnih dijelova Panonskog bazena –
temeljena na površinskim i bušotinskim podacima.– Nafta, 50/9,
291–
310.
PAVELIĆ, D. (2001): Tectonostratigraphic model for the North Croatian and
North Bosnian sector of the Miocene Pannonian Basin System.– Basin
Research, 13, 359–376. doi: 10.1046/j.0950-091x.2001.00155.x
PAVELIĆ, D. & KOVAČIĆ, M. (2018): Sedimentology and stratigraphy of the
Neogene rift-type North Croatian Basin (Pannonian Basin System, Croatia):
A review.– Marine and Petroleum Geology, 91, 455–469. doi:
10.1016/j.marpetgeo.2018.01.026
PAWLOWSKY-GLAHN, V., EGOZCUE, J.J. & LOVELL, D. (2015): Tools
for compositional data with a total.– Statistical Modelling, 15/2, 175–190.
doi: 10.1177/1471082X14535526
PETTIJOHN, F.J., POTTER, P.E. & SIEVER, R. (1987): Sand and sandstone.–
2nd edition, Springer, New York, 553 p. doi: 10.1007/978-1-4612-
1066-5
PILLER, W., HARZHAUSER, M. & MANDIC, O. (2007): Miocene Central
Paratethys stratigraphy – current status and future directions.– Stratigraphy,
4, 151–168. doi: 10.29041/strat.04.2.09
RAZUM, I., LUŽAR-OBERITER, B., ZACCARINI, F., BABIĆ, L., MIKO,
S., HASAN, O., ILIJANIĆ, N., BEQIRAJ, E. & PAWLOWSKYGLAHN,
V. (2021): New sediment provenance approach based on orthonormal
log ratio transformation of geochemical and heavy mineral
data: Sources of eolian sands from the southeastern Adriatic archipelago.–
Chemical Geology, 583, 120451. doi: 10.1016/j.chemgeo.2021.120451
RAZUM, I., RUBINIĆ, V., MIKO, S., RUŽIČIĆ, S. & DURN, G. (2023): Coherent
provenance analysis of terra rossa from the northern Adriatic based
on heavy mineral assemblages reveals the emerged Adriatic shelf as
the main recurring source of siliciclastic material for their formation.–
Catena, 226, 107083. doi: 10.1016/j.catena.2023.107083
RÖGL, F. & STEININGER, F.F. (1983): Vom Zerfall der Tethys zu Mediterran
und Paratethys. Die Neogene Palaeogeographie und Palinspastik des zirkum-
mediterranen Raumes.– Annalen des Naturhistorischen Museum
in Wien, 85 A, 135–163.
RÖGL, F. (1998): Palaeogeographic considerations for Mediterranean and Paratethys
seaways (Oligocene to Miocene).– Annalen des Naturhistorischen
Museum in Wien, 99 A, 279–310.
ROSER, B.P. & KORSCH, R.J. (1988): Provenance signatures of sandstone--
mudstone suites using discriminant function analysis of major-element
dana. Chemical Geology 67, 119–139.
ROYDEN, L.H. (1988): Late cenozoic tectonics of the Pannonian Basin
System.– In: ROYDEN L.H. & HORVÁTH F. (eds.): The Pannonian Basin:
A Study in Basin Evolution. AAPG Memoir, 45, 27–48. doi: 10.1306/
M45474C3
RUKAVINA, D., SAFTIĆ, B., MATOŠ, B., KOLENKOVIĆ MOČILAC, I.,
PREMEC FUČEK, V. & CVETKOVIĆ, M. (2023): Tectonostratigraphic
analysis of the syn-rift infill in the Drvaa Basin, southwestern Pannonian
Basin System.– Marine and Petroleum Geology, 152, 106235. doi:
10.1016/j.marpetgeo.2023.106235
SAFTIĆ, B., VELIĆ, J., SZTANÓ, O., JUHÁSZ, GY. & IVKOVIĆ, Ž. (2003):
Tertiary subsurface facies, source rocks and hydrocarbon reservoirs in
the SW part of the Pannonian Basin (northern Croatia and south-western
Hungary).– Geologia Croatica, 56, 101–122.
SCHMID, S.M., BERNOULLI, D., FÜGENSCHUH, B., MATENCO, L., SCHEFER,
S., SCHUSTER, R., TISCHLER, M. & USTASZEWSKI, K.
(2008): The Alpine-Carpathian-Dinaridic orogenic system: correlation
and evolution of tectonic units.– Swiss Journal of Geosciences, 101,
139–
183. doi: 10.1007/s00015-008-1247-3
SCHMID, S.M., FÜGENSCHUH, B., KOUNOV, A., MATENCO, L., NIEVERGELT,
P., OBERHÄNSLI, R., PLEUGER, J., SCHEFER, S., SCHUSTER,
R., TOMLJENOVIĆ, B., USTASZEWSKI, K. & VAN HINSBERGEN,
D.J.J. (2020): Tectonic units of the Alpine collision zone
between Eastern Alps and western Turkey.– Gondwana Research, 78,
308–374. doi: 10.1016/j.gr.2019.07.005
SCHUSTER, R., KURZ, W., KRENN, K. & FRITZ, H. (2013): Introduction
to the Geology of the Eastern Alps.– Berichte de Geologischen Bundes-
Anstalt Wien, 99, 121–133.
ŠĆAVNIČAR, B. (1979): Pjescenjaci Pliocena i Miocena savske potoline.–
Zbornik Radova, Sekcija za Primljenu Geologiju, Geofiziku, Geokemiju,
Serija A 6, 351–382.
SEBE, K., KOVAČIĆ, M., MAGYAR, I., KRIZMANIĆ, K., ŠPELIĆ, M., BIGUNAC,
D., SÜTŐ-SZENTAI, M., KOVÁCS, Á., SZUROMI-KORECZ,
A., BAKRAČ, K., HAJEK-TADESSE, V., TROSKOT-ČORBIĆ, T.
& SZTANÓ, O. (2020): Correlation of upper Miocene-Pliocene Lake
Pannon deposits across the Drava Basin, Croatia and Hungary.– Geologia
Croatica, 73/3, 177–195. doi: 10.4154/gc.2020.12
SNEIDER, R.M. (1990): Reservoir Description of Sandstones.– In: BARWIS
J.H., MCPHERSON J.G. & STUDLICK J.R.J. (eds.): Sandstone Petroleum
Reservoirs. Casebooks in Earth Sciences. Springer, New York, 1–3.
doi: 10.1007/978-1-4613-8988-0_1
STEININGER, F.F. & RÖGL, F. (1979): The Paratethys history – a contribution
towards the Neogene geodynamics of the Alpine Orogene (an abstract).–
Ann. Géol. Pays Hellén., Tome hors serie, fasc. III, 1153–1165,
Athens.
SZTANÓ, O., SZAFIÁN, P., MAGYAR, I., HORÁNYI, A., BADA, G., HUGHES,
D.W., HOYER, D.L. & WALLIS, R.J. (2013): Aggradation and
progradation controlled clinothems and deepwater sand delivery model
in the Neogene Lake Pannon, Makó Trough, Pannonian Basin, SE Hungary.–
Global and Planetary Change, 103, 149–167. doi: 10.1016/j.gloplacha.
2012.05.026
SZTANÓ, O., SEBE, K., CSILLAG, G. & MAGYAR, I. (2015): Turbidites as
indicators of Palaeotopography, Upper Miocene Lake Pannon, Western
Mecsek Mountains (Hungary).– Geologica Carpathica, 66, 331–344. doi:
10.1515/geoca-2015-0029
TARI, G., HORVÁTH, F. & RUMPLER, J. (1992): Styles of extension in the
Pannonian Basin.– Tectonophysics, 208, 203–219. https://doi.
org/10.1016/0040-1951(92)90345-7
ŠPELIĆ, M., KOVÁCS, Á., SAFTIĆ, B. & SZTANÓ, O. (2023): Competition
of deltaic feeder systems reflected by slope progradation: a high-resolution
example from the Late Miocene-Pliocene, Drava Basin, Croatia.–
International Journal of Earth Sciences, 112, 1023–1041. doi: 10.1007/
s00531-023-02290-w
ŠUICA, S., GARAŠIĆ, V. & WOODLAND, A.B. (2022a): Petrography and
geochemistry of granitoids and related rocks from the pre-Neogene basement
of the Slavonia–Srijem Depression (Croatia).– Geologia Croatica,
75, 129–144. doi: 10.4154/gc.2022.09
ŠUICA, S., TAPSTER, S.R., MIŠUR, I. & TRINAJSTIĆ, N. (2022b): The
Late Cretaceous syenite from the Sava suture zone (eastern Croatia).– In:
XXII International Congress of the CBGA, Plovdiv, Bulgaria, 7–11 September
2022, Abstracts, 100.
TAYLOR, S.R. & MCLENNAN, S.M. (1985): The continental crust: its composition
and evolution.– Blackwell Science, Oxford, 315 p.
TER BORGH, M., VASILIEV, I., STOICA, M., KNEŽEVIĆ, S., MATENCO,
L., KRIJGSMAN, W., RUNDIĆ, LJ. & CLOETINGH, S. (2013): The
isolation of the Pannonian basin (Central Paratethys): New constrains
from magnetostratigraphy and biostratigraphy.– Global and Planetary
Change, 103, 99–118. doi: 10.1016/j.gloplacha.2012.10.001
TOMLJENOVIĆ, B. & CSONTOS, L. (2001): Neogene-Quaternary structures
in the border zone between Alps, Dinarides and Pannonian Basin
(Hrvatsko zagorje and Karlovac basins, Croatia).– International Journal
of Earth Sciences, 90, 560–578. doi: 10.1007/s005310000176
TUSCHL, M., KUREVIJA, T., KRPAN, M. & MACENIĆ, M. (2022): Overview
of the current activities related to deep geothermal energy utilisation
in the Republic of Croatia.– Clean Technologies and Environmental
Policy, 24, 3003–3031. doi: 10.1007/s10098-022-02383-1
VELIĆ, J., MALVIĆ, T., CVETKOVIĆ, M. & VRBANAC, B. (2012): Reservoir
geology, hydrocarbon reserves and production in the Croatian part
of the Pannonian Basin System.– Geologia Croatica, 65, 91–101. doi:
10.4154/GC.2012.07
VERMEESCH, P., RESENTINI, A. & GARZANTI, E. (2016): An R package
for statistical provenance analysis.– Sedimentary Geology, 336,
14–
25. doi: 10.1016/j.sedgeo.2016.01.009
VERMEESCH, P. (2018): Statistical models for point-counting data.– Earth
and Planetary Science Letters, 501, 112–118. doi:10.1016/j.epsl.
2018.08.019
VRBANAC, B., VELIĆ, J. & MALVIĆ, T. (2010): Sedimentation of deep-water
turbidites in the SW part of the Pannonian Basin.– Geologica Carpathica,
61/1, 55–69. doi: 10.2478/v10096-010-0001-8
WORDEN, R.H., MAYALL, M.J. & EVANS, I.J. (1997): Predicting reservoir
quality during exploration: lithic grains, porosity and permeability in
Tertiary clastic rocks of the South China Sea Basin.– Geological Society
of London, Special Publications, 126, 107–115. doi: 10.1144/GSL.
SP.1997.126.01.08
WORDEN, R.H. & BUREY, S.D. (2003): Sandstone diagenesis: the evolution
of sand to stone.– In: BURLEY, S.D & WORDEN, R.H. (eds.): Sandstone
Diagenesis: Recent and Ancient.– International Association of Sedimentologists,
4, 3–44.
WORDEN, R.H., ARMITAGE, P.J., BUTCHER, A.R., CHURCHILL, J.M.,
CSOMA, A.E., HOLLIS, C., LANDER, R.H. & OMMA, J.E. (2018):
Petroleum reservoir quality prediction: Overview and contrasting approaches
from sandstone and carbonate communities.– Geological Society
of London, Special Publications, 435, 1–31. doi: 10.1144/SP435.21