Middle Triassic basaltic pyroclastic rocks from the Mt. Medvednica ophiolitic mélange (NW Croatia): petrology, geochemistry and tectono-magmatic setting

Main Article Content

Damir Slovenec
https://orcid.org/0000-0003-3251-827X
Josip Halamić
Branimir Šegvić

Abstract

Hectometric blocks of Middle Triassic mafic pyroclastic rocks, represented by volcanic agglomerates/breccias  and lapilli tuffs, form part of the ophiolitic mélange of Mt. Medvednica, situated in the southwestern segment of  the Zagorje-Mid-Transdanubian Zone. These rocks share petrochemical characteristics with pyroclastic  derivatives of alkali, within-plate basaltic lavas of Mts. Medvednica, Samoborska Gora, and Kalnik, indicating the  occurrence of explosive events preceding the dominant effusive submarine volcanism during the Middle Triassic (Illyrian-Fassanian?) stages. The formation of these pre-ophiolitic pyroclastics is associated with an  intracontinental rift setting and reflects melts derived from an OIB-type enriched mantle plume source. These  pyroclastics represent uncontaminated melts that erupted through a highly thinned continental crust. In  geodynamic terms, the formation of pyroclastites occurred during the Late Anisian-Early Ladinian along the  continental margin of Palaeotethys through the proto back-arc rifting of continental lithosphere (Adria Plate), leading to the formation of the Maliak/Balkan Neotethys Rift, in the emerging northwestern segment of  Neotethys. The investigated pyroclastic rocks of Mt. Medvednica document the extension in an evolved  intracontinental rift basin, which immediately preceded the generation of the initial Neotethyan oceanic  lithosphere during the Upper Triassic. 

Downloads

Download data is not yet available.

Article Details

Section
Original Scientific Papers

References

AGRAWAL, S., GUEVARA, M. & VERMA, S.P. (2008): Tectonic discrimination of basic and ultrabasic volcanic rocks through log-transformed ratios of immobile trace elements.– Int. Geol. Rev., 50, 1057–1079. doi: 10.2747/0020-6814.50.12.1057

BABIĆ, LJ., HOCHULI, P.A. & ZUPANIČ, J. (2002): The Jurassic ophiolitic mélange in the NE Dinarides: Dating, internal structure and geotectonic implications.– Eclogae Geol. Helv., 95, 263–257.

BALEN, D., SCHNEIDER, P., OPITZ, J., MASSONNE, H. (2022): Pressure–temperature–time constraints on the evolution of epidote-bearing albite granite from Mt. Medvednica (Croatia): Further evidence of the Middle Triassic opening of the Neotethys Ocean.– Geologica Carpathica, 73, 411–433. doi: 10.31577/GeolCarp.73.5.2

BELAK, M., PAMIĆ, J., KOLAR-JURKOVŠEK, T., PECSKAY, Z. & KARAN, D. (1995): Alpine low-grade regional metamorphic complex of Mt. Medvednica (northwest Croatia).– In: VLAHOVIĆ, I., VELIĆ, I. & ŠPARICA, M. (eds.): Proceed., 1st Croat. Geol. Congr. Inst. Geol., Zagreb, 67–70.

BELAK, M., SLOVENEC, DA., KOLAR-JURKOVŠEK, T., GARAŠIĆ, V., PÉCSKAY, Z., TIBLJAŠ, D. & MIŠUR, I. (2022): Low-grade metamorphic rocks of the Tethys subduction– collision zone in the Medvednica Mt. (NW Croatia).– Geol. Carpathica, 73, 207–229. doi: 10.31577/GeolCarp.73.3.3

BLOOMER, S.H. (1994): Origin of segregation vesicles in volcanic rocks from the Lau Basin, leg 135.– In: HAWKINS, ., PARSON, L. & ALLAN, J. et al. (eds.): Proceed. of the Ocean Drilling Program, Scientific Results, College Station, TX (Ocean Drilling Program), 135, 717–735. doi: 10.2973/odp.proc.sr.135.127.1994

BORTOLOTTI, V., CARRAS, N., CHIARI, M., FAZZUOLI, M., MARCUCCI, M., NIRTA, G., PRINCIPI, G. & SACCANI, E. (2009): The ophiolite-bearing mélange in the Early Tertiary Pindos flysch of Etolia (Central Greece).– Ofioliti, 34, 83–94.

CABANIS, B. & LECOLLE, M. (1989): Le diagramme La/10-Y/15-Nb/8: un outil pour la discrimination des series volcaniques et la mise en evidence des processus de mélange et/ou de contamination crustale.– C.R. Acad. Sci. Serr. II, 309, 2023–2029.

CASETTA, F., ICKERT, R.B., MARK, D.F., BONADIMAN, C., GIACOMONI, P. P., NTAFLOS, T. & COLTORTI, M. (2019): The alkaline lamprophyres of the dolomitic area (Southern Alps, Italy): Markers of the late triassic change from orogenic like to anorogenic magmatism.– J. Petrol., 60, 1298.10. doi: 10.1093/petrology/egz031

CHEN, C.Y., FREY, F.A. & GARCIA, M.O. (1990): Evolution of alkalic lavas at Haleakala Volcano, east Maui, Hawaii.– Contr. Miner. Petrol., 105, 197–218. doi: 10.1007/BF00678986

DE MIN, A., VELICOGNA, M., ZIBERNA, L., CHIARADIA, M., ALBERTI, A. & MARZOLI, A. (2020): Triassic magmatism in the European Southern alps as an early phase of pangea break-up.– Geol. Mag., 157, 11, 1800–1822. doi: 10.1017/S0016756820000084

FESTA, A., PINI, G.A., DILEK, Y. & CODEGONE, J. (2010): Mélanges and mélange-forming processes: a historical overview and new concepts.– International Geology Review, iFirst article, 1–66. doi: 10.1080/00206810903557704

FITTON, J.G. (2007): The OIB paradox.– In: FOULGER, G.R. & JURDY, D.M. (eds.). Plates, plume and planetary processes.– Geol. Soc. Am., Spec. Paper, 430, 387–412. doi: 10.1130/2007.2430(20)

FITTON, J.G., KEMPTON, D., ORMEROD, D.S. & LEEMAN, W.P. (1988): The role of lithospheric mantle in the generation of late Cenozoic basic magmas in the western United States.– J. Petrol. Spec. Lithosphere Issue, 331–349. doi: 10.1093/petrology/Special_Volume.1.331

GU, X., REMPE, D.M., DIETRICH, W.E., WEST, A.J., LIN, T.-C., JIN, L. & BRANTLEY, S.L. (2020): Chemical reactions, porosity, and microfracturing in shale during weathering: The effect of erosion rate.– Geochimica et Cosmochimica Acta, 269, 63–100. doi: 10.1016/j.gca.2019.09.044

HAAS, J., MIOČ, P., PAMIĆ, J., TOMLJENOVIĆ, B., ÁRKAI, P., BÉRCZI-MAKK, A., KOROKNAI, B., KOVÁCS, S. & R.-FELGENHAUER, E. (2000): Complex structural pattern of the Alpine-Dinaridic Pannonian triple junction.– Int. J. Earth Sci., 89, 377–389. doi: 10.1007/s005310000093

HALAMIĆ, J. (1998): Lithostratigraphy of Jurassic and Cretaceous sediments with ophiolites from the Mts. Medvednica, Kalnik and Ivanščica. PhD Thesis, Faculty of Science (in Croatian, English summary).– University of Zagreb, Zagreb, 188 p.

HALAMIĆ J., SLOVENEC DA. & KOLAR-JURKOVŠEK, T. (1998): Triassic pelagic limestones in pillow lavas in the Orešje quarry near Gornja Bistra, Medvednica Mt. (Northwest Croatia).– Geol. Croatica, 51, 33–45.

HALAMIĆ, J., GORIČAN, Š., SLOVENEC, DA. & KOLAR-JURKOVŠEK, T. (1999): Middle Jurassic radiolarite-clastic succession from the Medvednica Mt. (NW Croatia).– Geol. Croat., 52, 29–57.

HART, W.K., WOLDE, G.C., WALTER, R.C. & MERTZMAN, S.A. (1989): Basaltic volcanism in Ethiopia: constraints on continental rifting and mantle interactions.– J. Geophys. Res., 94, 7731-7748. doi: 10.1029/JB094iB06p07731

KISS, G., MOLNÁR, F., PALINKAŠ, L., KOVÁCS, S. & HORVATOVIĆ. H. (2012): Correlation of Triassic advanced rifting related Neotethyan submarine basaltic volcanism of the Darnó Unit (NE-Hungary) with some Dinaridic and Hellenidic occurrences on the basis of volcanological, fluid–rock interaction, and geochemical characteristics.– Int. J. Earth Sci., 101, 1503–1521.

KOGLIN, N., KOSTOPOULOS, D. & REISCHMANN, T. (2009): The Lesvos mafic–ultramafic complex, Greece: ophiolite or incipient rift?– Lithos, 108, 243–261. doi: 10.1016/j.lithos.2008.09.006

KOSTOPOULOS, D.K. & JAMES, S.D. (1992): Parameterization of the melting regime of the shallow upper mantle and the effects of variable lithospheric stretching on mantle modal stratification and trace element concentrations in magmas.– J. Petrol., 33, 665–691. doi: 10.1093/petrology/33.3.665

KRZESIŃSKA, A.M., BULTEL, B., LOIZEAU, D., CRAW, D., APRIL, R., POULET, F. & WERNER, S.C. (2021): Mineralogical and Spectral (Near-Infrared) Characterization of Fe-Rich Vermiculite-Bearing Terrestrial Deposits and Constraints for Mineralogy of Oxia Planum, Exo-Mars 2022 Landing Site.– Astrobiology, 21, 997–1016. doi: 10.1089/ast.2020.2410

LUGOVIĆ, B., SLOVENEC, DA., HALAMIĆ, J. & ALTHERR, R. (2007): Petrology, geochemistry and geotectonic affinity of the Mesozoic ultramafic rocks from the southwesternmost Mid-Transdanubian Zone in Croatia.– Geol. Carpathica, 58, 511–530.

LUSTRINO, M., ABBAS, H., AGOSTINI, S., CAGGIATI, M., CARMINATI, E. & GIANOLLA, P. (2019): Origin of Triassic magmatism of the Southern Alps (Italy): Constraints from geochemistry and Sr-Nd-Pb isotopic ratios.– Gondwana Res., 75, 218–238. doi: 10.1016/j.gr.2019.04.011

MONJOIE, P., LAPIERRE, H., TASHKO, A., MASCLE, G.H., DECHAMP, A., MUCEKU, B. & BRUNET, B. (2008): Nature and origin of the Triassic volcanism in Albania and Othrys: a key to understanding the Neotethys opening?– Bull. Soc. G éol. Fr., 179, 411–425. doi: 10.2113/gssgfbull.179.4.411

PAMIĆ, J. (2002): The Sava-Vardar Zone of the Dinarides and Hellenides versus the Vardar ocean.– Eclogae geol. Helv., 95, 99–113.

PAMIĆ, J. & TOMLJENOVIĆ, B. (1998): Basic geological data on the Croatian part of the Mid-Transdanubian Zone as exemplified by Mt. Medvednica located along the Zagreb-Zemplen Fault Zone.– Acta Geol. Hungarica, 41, 389–400.

PEARCE, J.A. (1996): A user’s guide to basalt discrimination diagrams. In Trace Element Geochemistry of Volcanic Rocks: Applications for Massive Sulphide Exploration.– In: WYMAN, D.A. (ed.). Short Course Notes 12; Geological Association of Canada: Newfoundland, NL, Canada, 79–113.

PEARCE, J.A. & NORRY, M.J. (1979): Petrogenetic Implications of Ti, Zr, Y, and Nb Variations in Volcanic Rocks.– Contrib. Mineral. Petrol., 69, 33–47.

POLAT, A., HOFMANN, A.W. & ROSING, M.T. (2002): Boninite-like volcanic rocks in the 3.7–3.8 Ga Isua greenstone belt, West Greenland: geochemical evidence for intra-oceanic subduction zone processes in the early Earth.– Chemical Geology, 184, 231–254. doi: 10.1016/S0009-2541(01)00363-1

POLAT, A. & HOFMANN, A. W. (2003): Alteration and geochemical patterns in the 3.7–3.8 Ga Isua greenstone belt, West Greenland.– Precambrian Research, 126, 197–218. doi: 10.1016/S0301-9268(03)00095-0

SACCANI, E. & PHOTIADES, A. (2005): Petrogenesis and tectonomagmatic significance of volcanic and subvolcanic rocks in the Albanide-Hellenide ophiolitic mélanges.– The Island Arc, 14, 494–516. doi: 10.1111/j.1440-1738.2005.00480.x

SACCANI, E. (2015): A new method of discriminating different types of post-Archean ophiolitic basalts and their tectonic significance using Th-Nb and Ce-Dy-Yb systematics.– Geoscience Frontiers, 6, 481–501. doi: 10.1016/j.gsf.2014.03.006

SAYIT, K. & GÖNCÜOGLU, M.C. (2009): Geochemistry of mafic rocks of the Karakaya complex, Turkey: evidence for plume-involvement in the Palaeotethyan extensional regime during the Middle and Late Triassic.– Int. J. Earth Sci., 98, 367–385. doi: 10.1007/s00531-007-0251-6

SCHMID, R. (1981): Descriptive nomenclature and classifcation of pyroclastic deposits and fragments: recommendations of the IUGS Subcommission on the Systematics of Igneous Rocks.– Geology, 9, 41–43.

SCHMID, S.M., BERNOULLI, D., FÜGENSCHUH, B., MATENCO, L., SCHEFFER, S., SCHUSTER, R., TISCHLER, M. & USTASZEWSKI, K. (2008): The Alpine-Carpathian-Dinaridic orogenic system: correlation and evolution of tectonic units.– Swiss J. Geosci., 101, 139–183. doi: 10.1007/s00015-008-1247-3

SCHMID, S.M., FÜGENSSCHUH, B. & KOUNOV, A. et al. (2020): Tectonic units of the Alpine collision zone between Eastern Alps and western Turkey.– Gondwana Research, 78, 308–374. doi: 10.1016/j.gr.2019.07.005

SHERVAIS, J.W. (2023): The petrogenesis of modern and ophiolitic lavas reconsidered: Ti-V and Nb-Th.– Geoscience Frontiers, 13, 101319. doi: 10.1016/j.gsf.2021.101319

SLOVENEC, DA. & PAMIĆ, J. (2002): The Vardar Zone ophiolites of Mt. Medvednica located along the Zagreb- Zemplin line (NW Croatia).– Geol. Carpathica, 53, 53–59.

SLOVENEC, DA. & LUGOVIĆ, B. (2008): Amphibole gabbroic rocks from the Mt. Medvednica ophiolite mélange (NW Croatia): geochemistry and tectonic setting.– Geol. Carpathica, 59, 277–293.

SLOVENEC, DA. & LUGOVIĆ, B. (2009): Geochemistry and tectono-magmatic affinity of extrusive and dyke rocks from the ophiolite mélange in the SW Zagorje-Mid-Transdanubian Zone (Mt. Medvednica, Croatia).– Ofioliti, 34, 63–80.

SLOVENEC, DA., LUGOVIĆ, B. & VLAHOVIĆ, I. (2010): Geochemistry, petrology and tectonomagmatic significance of basaltic rocks from the ophiolite mélange at the NW External-Internal Dinarides junction (Croatia).– Geol. Carpathica, 61, 273–294. doi: 10.2478/v10096-010-0016-1

SLOVENEC, DA., LUGOVIĆ, B., MEYER, H.P. & GARAPIĆ-ŠIFTAR, G. (2011): A tectono-magmatic correlation of basaltic rocks from ophiolite mélanges at the north-eastern tip of the Sava-Vardar suture Zone, Northern Croatia, constrained by geochemistry and petrology.– Ofioliti, 36, 77–100.

SLOVENEC, DA, LUGOVIĆ, B., SLOVENEC, D. (2012): Secondary mineral paragenesis in the mafic extrusive rocks from the Mt. Medvednica ophiolite melange (Croatia)/Sekundarne mineralne parageneze u mafitnim ekstruzivnim stijenama iz ofiolitnog melanza Medvednice (Hrvatska).– Rudarsko-Geolosko-Naftni Zbornik, 25, 33–46.

SLOVENEC, DA. & ŠEGVIĆ, B. (2021): Middle Triassic high-K calc-alkaline effusive and pyroclastic rocks from the Zagorje-Mid-Transdanubian Zone (Mt. Kuna Gora; NW Croatia): mineralogy, petrology, geochemistry and tectono-magmatic affinity.– Geologica Acta, 19, 1–23. doi: 10.1344/GeologicaActa2021.19.2

SLOVENEC, DA. & ŠEGVIĆ, B. (2023): The evolution of the Mesozoic lithosphere of northwestern Neotethys: A petrogenetic and geodynamic perspective.– Journal of the Geological Society, 181/1. doi: 10.1144/jgs2023-132

SPATH, A., LE ROEX, A.P. & DUNCAN, R.A. (1996): The geochemistry of lavas from the Comores Archipelago, Western Indian Ocean: petrogenesis and mantle source region characteristics.– J. Petrol., 37, 961–991.

SPATH A., LE ROEX A.P. & OPIVO-AKECH N. (2001): Plume lithosphere interaction and the origin of continental rift-related alkaline volcanism the Chyulu Hills volcanic Province, Soutern Kenya.– J. Petrol., 42, 765–787.

STAMPFLI, G.M. & BOREL, G.D. (2002): A plate tectonic model for the Palaeozoic and Mesozoic constrained by dinamic plate boundaries and restored synthetic ocean isochrons.- Earth Planet Sci Lett.– 196, 17–33.

STAMPFLI, G.M. & BOREL, G.D. (2004): The TRANSMED transects in space and time: Constraints on the Palaeotectonic evolution of the Mediterranean domain.– In: CAVAZZA, W., ROURE, F., SPAKMAN, W., STAMPFLI, G.M. & ZIEGLER, P.A. (eds.): The TRANSMED Atlas: the Mediterranean Region from crust to mantle. Springer Verlag, 53–80. doi: 10.1007/978-3-642-18919-7_3

STAMPFLI, G.M. & HOCHARD, C. (2009): Plate tectonics of the Alpine realm.–Geol. Soc. London Spec. Publ., 327, 89–111. doi: 10.1144/SP327.6

SUN, S.S. & McDONOUGH, W.F. (1989): Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes.– In: SAUNDERS, A.D. & NORRY, M.J. (eds.). Magmatism in ocean basins.– Geol. Soc. London. Spec. Publ., 42, 313–345. doi: 10.1144/GSL.SP.1989.042.01.19

ŠEGVIĆ, B., SLOVENEC, DA. & BADURINA, L. (2023): Major and rare earth element mineral chemistry of low-grade assemblages inform dynamics of hydrothermal ocean-floor metamorphism in the Dinaridic Neotethys.– Geological Magazine 160, 444–470. doi: 10.1017/S0016756822001030

ŠIKIĆ, K., BASCH, O. & ŠIMUNIĆ, AN. (1978): Basic geological map of SFRY 1:100.000.– Zagreb sheet, Inst. Geol. Istraž. Zagreb, Sav. Geol. zavod, Beograd.

ŠIKIĆ, K., BASCH, O. & ŠIMUNIĆ, AN. (1979): Basic geological map of SFRY 1:100.000. Sheet Zagreb, Geology of the Zagreb sheet (in Croatian, English summary).– Inst. Geol. Istraž. Zagreb, Sav. Geol. zavod, Beograd, 81 p.

TARI, V. & PAMIĆ, J. (1998): Geodynamic evolution of the Northern Dinarides and the southern parts of the Pannonian Basin.– Tectonophysics, 297, 296–281. doi: 10.1016/S0040-1951(98)00172-3

TAYLOR, S.R. & McLENNAN, S.M. (1985): The continental crust: its composition and evolution.– Blackwell, Oxford, 312 p. doi: 10.1017/CBO9780511575358.014

van HINSBERGEN, D.J.J., TORSVIK, T.H., SCHMID, S.M., MAŢENCO, L.C., MAFFIONE, M., VISSERS, R.L.M., GÜRER, D. & SPAKMAN, W. (2020): Orogenic architecture of the Mediterranean region and kinematic reconstruction of its tectonic evolution since the Triassic.– Gondwana Research, 81, 79–229. doi: 10.1016/j.gr.2019.07.009

VELICOGNA, M., PRASEK, M.K., ZIBERNA, L., DE MIN, A., BROMBIN, V., JOURDAN, F., RENNE, P.R., BALEN, D. & MARZOLI, A. (2023): The Norian magmatic rocks of Jabuka, Brusnik and Vis Islands (Croatia) and their bearing on the evolution of Triassic magmatism in the Northern Mediterranean.– Int. Geol. Rev., 65, 2558–2579. doi: 10.1080/00206814.2022.2150898

WEAVER, C.E. (1956): The Distribution and Identification of Mixed-layer Clays in Sedimentary Rocks.– American Mineralogist, 41, 202–221. doi: 10.1346/CCMN.1955.0040143

WHITNEY, D.L. & EVANS, B.W. (2010): Abbreviations for names of rock-forming minerals.– Am. Mineral., 95, 185–187. doi: 10.2138/am.2010.3371

WILSON, M. (1989): Igneous Petrogenesis.– Unwin Hyman Ltd., London, 466 p. doi: 10.1007/978-1-4020-6788-4