Middle Triassic basaltic pyroclastic rocks from the Mt. Medvednica ophiolitic mélange (NW Croatia): petrology, geochemistry and tectono-magmatic setting

Main Article Content

Damir Slovenec
https://orcid.org/0000-0003-3251-827X
Josip Halamić
Branimir Šegvić

Abstract

Hectometric blocks of Middle Triassic mafic pyroclastic rocks, represented by volcanic agglomerates/breccias and lapilli tuffs, form part of the ophiolitic mélange of Mt. Medvednica, situated in the southwestern segment of the Zagorje-Mid-Transdanubian Zone. These rocks share petrochemical characteristics with pyroclastic  derivatives of alkali, within-plate basaltic lavas of Mts. Medvednica, Samoborska Gora, and Kalnik, indicating the occurrence of explosive events preceding the dominant effusive submarine volcanism during the Middle Triassic (Illyrian-Fassanian?) stages. The formation of these pre-ophiolitic pyroclastics is associated with an intracontinental rift setting and reflects melts derived from an OIB-type enriched mantle plume source. These  pyroclastics represent uncontaminated melts that erupted through a highly thinned continental crust. In geodynamic terms, the formation of pyroclastites occurred during the Late Anisian-Early Ladinian along the  continental margin of Palaeotethys through the proto back-arc rifting of continental lithosphere (Adria Plate), leading to the formation of the Maliak/Balkan Neotethys Rift, in the emerging northwestern segment of Neotethys. The investigated pyroclastic rocks of Mt. Medvednica document the extension in an evolved intracontinental rift basin, which immediately preceded the generation of the initial Neotethyan oceanic  lithosphere during the Upper Triassic.

Downloads

Download data is not yet available.

Article Details

Section
Original Scientific Papers

References

AGRAWAL, S., GUEVARA, M. & VERMA, S.P. (2008): Tectonic discrimination
of basic and ultrabasic volcanic rocks through log-transformed
ratios of immobile trace elements.– Int. Geol. Rev., 50, 1057–1079. doi:
10.2747/0020-6814.50.12.1057
BABIĆ, LJ., HOCHULI, P.A. & ZUPANIČ, J. (2002): The Jurassic ophiolitic
mélange in the NE Dinarides: Dating, internal structure and geotectonic
implications.– Eclogae Geol. Helv., 95, 263–257.
BALEN, D., SCHNEIDER, P., OPITZ, J., MASSONNE, H. (2022): Pressure–
temperature–time constraints on the evolution of epidote-bearing albite
granite from Mt. Medvednica (Croatia): Further evidence of the Middle
Triassic opening of the Neotethys Ocean.– Geologica Carpathica, 73,
411–433. doi: 10.31577/GeolCarp.73.5.2
BELAK, M., PAMIĆ, J., KOLAR-JURKOVŠEK, T., PECSKAY, Z. &
KARAN,
D. (1995): Alpine low-grade regional metamorphic complex
of Mt. Medvednica (northwest Croatia).– In: VLAHOVIĆ, I., VELIĆ, I.
& ŠPARICA, M. (eds.): Proceed., 1st Croat. Geol. Congr. Inst. Geol.,
Zagreb,
67–70.
BELAK, M., SLOVENEC, DA., KOLAR-JURKOVŠEK, T., GARAŠIĆ, V.,
PÉCSKAY, Z., TIBLJAŠ, D. & MIŠUR, I. (2022): Low-grade metamorphic
rocks of the Tethys subduction– collision zone in the Medvednica
Mt. (NW Croatia).– Geol. Carpathica, 73, 207–229. doi: 10.31577/
GeolCarp.73.3.3
BLOOMER, S.H. (1994): Origin of segregation vesicles in volcanic rocks from
the Lau Basin, leg 135.– In: HAWKINS, J., PARSON, L. & ALLAN,
J. et al. (eds.): Proceed. of the Ocean Drilling Program, Scientific
Results, College Station, TX (Ocean Drilling Program), 135, 717–
735. doi: 10.2973/odp.proc.sr.135.127.1994
BORTOLOTTI, V., CARRAS, N., CHIARI, M., FAZZUOLI, M., MARCUCCI,
M., NIRTA, G., PRINCIPI, G. & SACCANI, E. (2009): The ophiolite-
bearing mélange in the Early Tertiary Pindos flysch of Etolia (Central
Greece).– Ofioliti, 34, 83–94.
CABANIS, B. & LECOLLE, M. (1989): Le diagramme La/10-Y/15-Nb/8: un
outil pour la discrimination des series volcaniques et la mise en evidence
des processus de mélange et/ou de contamination crustale.– C.R. Acad.
Sci. Serr. II, 309, 2023–2029.
CASETTA, F., ICKERT, R.B., MARK, D.F., BONADIMAN, C., GIACOMONI,
P. P., NTAFLOS, T. & COLTORTI, M. (2019): The alkaline
lamprophyres
of the dolomitic area (Southern Alps, Italy): Markers of
the late triassic change from orogenic like to anorogenic magmatism.–
J. Petrol., 60, 1298.10. doi: 10.1093/petrology/egz031
CHEN, C.Y., FREY, F.A. & GARCIA, M.O. (1990): Evolution of alkalic lavas
at Haleakala Volcano, east Maui, Hawaii.– Contr. Miner. Petrol., 105,
197–218. doi: 10.1007/BF00678986
DE MIN, A., VELICOGNA, M., ZIBERNA, L., CHIARADIA, M., ALBERTI,
A. & MARZOLI, A. (2020): Triassic magmatism in the European
Southern alps as an early phase of pangea break-up.– Geol. Mag., 157,
11, 1800–1822. doi: 10.1017/S0016756820000084
FESTA, A., PINI, G.A., DILEK, Y. & CODEGONE, J. (2010): Mélanges
and mélange-forming processes: a historical overview and new
concepts.–
International Geology Review, iFirst article, 1–66. doi:
10.1080/00206810903557704
FITTON, J.G. (2007): The OIB paradox.– In: FOULGER, G.R. & JURDY,
D.M. (eds.). Plates, plume and planetary processes.– Geol. Soc. Am.,
Spec. Paper, 430, 387–412. doi: 10.1130/2007.2430(20)
FITTON, J.G., KEMPTON, D., ORMEROD, D.S. & LEEMAN, W.P. (1988):
The role of lithospheric mantle in the generation of late Cenozoic basic
magmas in the western United States.– J. Petrol. Spec. Lithosphere Issue,
331–349. doi: 10.1093/petrology/Special_Volume.1.331
GU, X., REMPE, D.M., DIETRICH, W.E., WEST, A.J., LIN, T.-C., JIN, L. &
BRANTLEY, S.L. (2020): Chemical reactions, porosity, and microfracturing
in shale during weathering: The effect of erosion rate.– Geochimica
et Cosmochimica Acta, 269, 63–100. doi: 10.1016/j.gca.2019.09.044
HAAS, J., MIOČ, P., PAMIĆ, J., TOMLJENOVIĆ, B., ÁRKAI, P., BÉRCZI-
MAKK, A., KOROKNAI, B., KOVÁCS, S. & R.-FELGENHAUER,
E. (2000): Complex structural pattern of the Alpine-Dinaridic Pannonian
triple junction.– Int. J. Earth Sci., 89, 377–389. doi: 10.1007/
s005310000093
HALAMIĆ, J. (1998): Lithostratigraphy of Jurassic and Cretaceous sediments
with ophiolites from the Mts. Medvednica, Kalnik and Ivanščica. PhD
Thesis, Faculty of Science (in Croatian, English summary).– University
of Zagreb, Zagreb, 188 p.
HALAMIĆ J., SLOVENEC DA. & KOLAR-JURKOVŠEK, T. (1998): Triassic
pelagic limestones in pillow lavas in the Orešje quarry near Gornja
Bistra, Medvednica Mt. (Northwest Croatia).– Geol. Croatica, 51, 33–45.
HALAMIĆ, J., GORIČAN, Š., SLOVENEC, DA. & KOLAR-JURKOVŠEK,
T. (1999): Middle Jurassic radiolarite-clastic succession from the Medvednica
Mt. (NW Croatia).– Geol. Croat., 52, 29–57.
HART, W.K., WOLDE, G.C., WALTER, R.C. & MERTZMAN, S.A. (1989):
Basaltic volcanism in Ethiopia: constraints on continental rifting and
mantle interactions.– J. Geophys. Res., 94, 7731-7748. doi: 10.1029/
JB094iB06p07731
KISS, G., MOLNÁR, F., PALINKAŠ, L., KOVÁCS, S. & HORVATOVIĆ. H.
(2012): Correlation of Triassic advanced riftingrelated Neotethyan submarine
basaltic volcanism of the Darnó Unit (NE-Hungary) with some
Dinaridic and Hellenidic occurrences on the basis of volcanological, fluid–
rock interaction, and geochemical characteristics.– Int. J. Earth Sci.,
101, 1503–1521.
KOGLIN, N., KOSTOPOULOS, D. & REISCHMANN, T. (2009): The Lesvos
mafic–ultramafic complex, Greece: ophiolite or incipient rift?– Lithos,
108, 243–261. doi: 10.1016/j.lithos.2008.09.006
KOSTOPOULOS, D.K. & JAMES, S.D. (1992): Parameterization of the melting
regime of the shallow upper mantle and the effects of variable lithospheric
stretching on mantle modal stratification and trace element
concentrations in magmas.– J. Petrol., 33, 665–691. doi: 10.1093/petrology/
33.3.665
KRZESIŃSKA, A.M., BULTEL, B., LOIZEAU, D., CRAW, D., APRIL, R.,
POULET, F. & WERNER, S.C. (2021): Mineralogical and Spectral (Near-Infrared) Characterization of Fe-Rich Vermiculite-Bearing Terrestrial
Deposits and Constraints for Mineralogy of Oxia Planum, Exo-
Mars 2022 Landing Site.– Astrobiology, 21, 997–1016. doi: 10.1089/
ast.2020.2410
LUGOVIĆ, B., SLOVENEC, DA., HALAMIĆ, J. & ALTHERR, R. (2007):
Petrology, geochemistry and geotectonic affinity of the Mesozoic ultramafic
rocks from the southwesternmost Mid-Transdanubian Zone in Croatia.–
Geol. Carpathica, 58, 511–530.
LUSTRINO, M., ABBAS, H., AGOSTINI, S., CAGGIATI, M., CARMINATI,
E. & GIANOLLA, P. (2019): Origin of Triassic magmatism of the Southern
Alps (Italy): Constraints from geochemistry and Sr-Nd-Pb isotopic
ratios.– Gondwana Res., 75, 218–238. doi: 10.1016/j.gr.2019.04.011
MONJOIE, P., LAPIERRE, H., TASHKO, A., MASCLE, G.H., DECHAMP,
A., MUCEKU, B. & BRUNET, B. (2008): Nature and origin
of the Triassic volcanism in Albania and Othrys: a key to understanding
the Neotethys opening?– Bull. Soc. G éol. Fr., 179,
411–425. doi: 10.2113/gssgfbull.179.4.411
PAMIĆ, J. (2002): The Sava-Vardar Zone of the Dinarides and Hellenides versus
the Vardar ocean.– Eclogae geol. Helv., 95, 99–113.
PAMIĆ, J. & TOMLJENOVIĆ, B. (1998): Basic geological data on the Croatian
part of the Mid-Transdanubian Zone as exemplified by Mt. Medvednica
located along the Zagreb-Zemplen Fault Zone.– Acta Geol. Hungarica,
41, 389–400.
PEARCE, J.A. (1996): A user’s guide to basalt discrimination diagrams.
In Trace Element Geochemistry of Volcanic Rocks: Applications for
Massive Sulphide Exploration.– In: WYMAN, D.A. (ed.). Short Course
Notes 12; Geological Association of Canada: Newfoundland, NL, Canada,
79–113.
PEARCE, J.A. & NORRY, M.J. (1979): Petrogenetic Implications of Ti, Zr, Y,
and Nb Variations in Volcanic Rocks.– Contrib. Mineral. Petrol., 69,
33–47.
POLAT, A., HOFMANN, A.W. & ROSING, M.T. (2002): Boninite-like volcanic
rocks in the 3.7–3.8 Ga Isua greenstone belt, West Greenland: geochemical
evidence for intra-oceanic subduction zone processes in the
early Earth.– Chemical Geology, 184, 231–254. doi: 10.1016/S0009-
2541(01)00363-1
POLAT, A. & HOFMANN, A. W. (2003): Alteration and geochemical patterns
in the 3.7–3.8 Ga Isua greenstone belt, West Greenland.– Precambrian
Research, 126, 197–218. doi: 10.1016/S0301-9268(03)00095-0
SACCANI, E. & PHOTIADES, A. (2005): Petrogenesis and tectonomagmatic
significance of volcanic and subvolcanic rocks in the Albanide-
-Hellenide
ophiolitic mélanges.– The Island Arc, 14, 494–516. doi:
10.1111/j.1440-
1738.2005.00480.x
SACCANI, E. (2015): A new method of discriminating different types of
post-Archean ophiolitic basalts and their tectonic significance using Th-
Nb and Ce-Dy-Yb systematics.– Geoscience Frontiers, 6, 481–501. doi:
10.1016/j.gsf.2014.03.006
SAYIT, K. & GÖNCÜOGLU, M.C. (2009): Geochemistry of mafic rocks of
the Karakaya complex, Turkey: evidence for plume-involvement in the
Palaeotethyan extensional regime during the Middle and Late Triassic.–
Int. J. Earth Sci., 98, 367–385. doi: 10.1007/s00531-007-0251-6
SCHMID, R. (1981): Descriptive nomenclature and classifcation of pyroclastic
deposits and fragments: recommendations of the IUGS Subcommission
on the Systematics of Igneous Rocks.– Geology, 9, 41–43.
SCHMID, S.M., BERNOULLI, D., FÜGENSCHUH, B., MATENCO, L., SCHEFFER,
S., SCHUSTER, R., TISCHLER, M. & USTASZEWSKI, K.
(2008): The Alpine-Carpathian-Dinaridic orogenic system: correlation
and evolution of tectonic units.– Swiss J. Geosci., 101, 139–183. doi:
10.1007/s00015-008-1247-3
SCHMID, S.M., FÜGENSSCHUH, B. & KOUNOV, A. et al. (2020): Tectonic
units of the Alpine collision zone between Eastern Alps and western
Turkey.– Gondwana Research, 78, 308–374. doi: 10.1016/j.gr.2019.07.005
SHERVAIS, J.W. (2023): The petrogenesis of modern and ophiolitic lavas reconsidered:
Ti-V and Nb-Th.– Geoscience Frontiers, 13, 101319. doi:
10.1016/j.gsf.2021.101319
SLOVENEC, DA. & PAMIĆ, J. (2002): The Vardar Zone ophiolites of Mt.
Medvednica located along the Zagreb-Zemplin line (NW Croatia).– Geol.
Carpathica, 53, 53–59.
SLOVENEC, DA. & LUGOVIĆ, B. (2008): Amphibole gabbroic rocks from
the Mt. Medvednica ophiolite mélange (NW Croatia): geochemistry and
tectonic setting.– Geol. Carpathica, 59, 277–293.
SLOVENEC, DA. & LUGOVIĆ, B. (2009): Geochemistry and tectono-magmatic
affinity of extrusive and dyke rocks from the ophiolite mélange
in the SW Zagorje-Mid-Transdanubian Zone (Mt. Medvednica, Croatia).–
Ofioliti, 34, 63–80.
SLOVENEC, DA., LUGOVIĆ, B. & VLAHOVIĆ, I. (2010): Geochemistry,
petrology and tectonomagmatic significance of basaltic rocks from the
ophiolite mélange at the NW External-Internal Dinarides junction (Croatia).–
Geol. Carpathica, 61, 273–294. doi: 10.2478/v10096-010-0016-1
SLOVENEC, DA., LUGOVIĆ, B., MEYER, H.P. & GARAPIĆ-ŠIFTAR, G.
(2011): A tectono-magmatic correlation of basaltic rocks from ophiolite
mélanges at the north-eastern tip of the Sava-Vardar suture Zone, Northern
Croatia, constrained by geochemistry and petrology.– Ofioliti, 36,
77–100.
SLOVENEC, DA, LUGOVIĆ, B., SLOVENEC, D. (2012): Secondary mineral
paragenesis in the mafic extrusive rocks from the Mt. Medvednica ophiolite
melange (Croatia)/Sekundarne mineralne parageneze u mafitnim
ekstruzivnim stijenama iz ofiolitnog melanza Medvednice (Hrvatska).–
Rudarsko-Geolosko-Naftni Zbornik, 25, 33–46.
SLOVENEC, DA. & ŠEGVIĆ, B. (2021): Middle Triassic high-K calc-alkaline
effusive and pyroclastic rocks from the Zagorje-Mid-Transdanubian
Zone (Mt. Kuna Gora; NW Croatia): mineralogy, petrology, geochemistry
and tectono-magmatic affinity.– Geologica Acta, 19, 1–23. doi:
10.1344/GeologicaActa2021.19.2
SLOVENEC, DA. & ŠEGVIĆ, B. (2023): The evolution of the Mesozoic lithosphere
of northwestern Neotethys: A petrogenetic and geodynamic
perspective.– Journal of the Geological Society, 181/1. doi: 10.1144/
jgs2023-132
SPATH, A., LE ROEX, A.P. & DUNCAN, R.A. (1996): The geochemistry of
lavas from the Comores Archipelago, Western Indian Ocean: petrogenesis
and mantle source region characteristics.– J. Petrol., 37, 961–991.
SPATH A., LE ROEX A.P. & OPIVO-AKECH N. (2001): Plume lithosphere
interaction and the origin of continental rift-related alkaline volcanism
the Chyulu Hills volcanic Province, Soutern Kenya.– J. Petrol., 42, 765–
787.
STAMPFLI, G.M. & BOREL, G.D. (2002): A plate tectonic model for the Palaeozoic
and Mesozoic constrained by dinamic plate boundaries and restored
synthetic ocean isochrons.- Earth Planet Sci Lett.– 196, 17–33.
STAMPFLI, G.M. & BOREL, G.D. (2004): The TRANSMED transects in
space and time: Constraints on the Palaeotectonic evolution of the Mediterranean
domain.– In: CAVAZZA, W., ROURE, F., SPAKMAN, W.,
STAMPFLI, G.M. & ZIEGLER, P.A. (eds.): The TRANSMED Atlas:
the Mediterranean Region from crust to mantle. Springer Verlag, 53–80.
doi: 10.1007/978-3-642-18919-7_3
STAMPFLI, G.M. & HOCHARD, C. (2009): Plate tectonics of the Alpine realm.–
Geol. Soc. London Spec. Publ., 327, 89–111. doi: 10.1144/SP327.6
SUN, S.S. & McDONOUGH, W.F. (1989): Chemical and isotopic systematics
of oceanic basalts: implications for mantle composition and processes.–
In: SAUNDERS, A.D. & NORRY, M.J. (eds.). Magmatism in ocean basins.–
Geol. Soc. London. Spec. Publ., 42, 313–345. doi: 10.1144/GSL.
SP.1989.042.01.19
ŠEGVIĆ, B., SLOVENEC, DA. & BADURINA, L. (2023): Major and rare
earth element mineral chemistry of low-grade assemblages inform dynamics
of hydrothermal ocean-floor metamorphism in the Dinaridic Neotethys.–
Geological Magazine 160, 444–470. doi: 10.1017/
S0016756822001030
ŠIKIĆ, K., BASCH, O. & ŠIMUNIĆ, AN. (1978): Basic geological map of
SFRY 1:100.000.– Zagreb sheet, Inst. Geol. Istraž. Zagreb, Sav. Geol.
zavod, Beograd.
ŠIKIĆ, K., BASCH, O. & ŠIMUNIĆ, AN. (1979): Basic geological map of
SFRY 1:100.000. Sheet Zagreb, Geology of the Zagreb sheet (in Croatian,
English summary).– Inst. Geol. Istraž. Zagreb, Sav. Geol. zavod,
Beograd, 81 p.
TARI, V. & PAMIĆ, J. (1998): Geodynamic evolution of the Northern Dinarides
and the southern parts of the Pannonian Basin.– Tectonophysics,
297, 296–281. doi: 10.1016/S0040-1951(98)00172-3
TAYLOR, S.R. & McLENNAN, S.M. (1985): The continental crust: its composition
and evolution.– Blackwell, Oxford, 312 p. doi: 10.1017/
CBO9780511575358.014
van HINSBERGEN, D.J.J., TORSVIK, T.H., SCHMID, S.M., MAŢENCO,
L.C., MAFFIONE, M., VISSERS, R.L.M., GÜRER, D. & SPAKMAN,
W. (2020): Orogenic architecture of the Mediterranean region and kinematic
reconstruction of its tectonic evolution since the Triassic.– Gondwana
Research, 81, 79–229. doi: 10.1016/j.gr.2019.07.009
VELICOGNA, M., PRASEK, M.K., ZIBERNA, L., DE MIN, A., BROMBIN,
V., JOURDAN, F., RENNE, P.R., BALEN, D. & MARZOLI, A. (2023):
The Norian magmatic rocks of Jabuka, Brusnik and Vis Islands (Croatia)
and their bearing on the evolution of Triassic magmatism in the Northern
Mediterranean.– Int. Geol. Rev., 65, 2558–2579. doi:
10.1080/00206814.2022.2150898
WEAVER, C.E. (1956): The Distribution and Identification of Mixed-
layer Clays in Sedimentary Rocks.– American Mineralogist,
41, 202–221. doi: 10.1346/CCMN.1955.0040143
WHITNEY, D.L. & EVANS, B.W. (2010): Abbreviations for names of
rock-forming minerals.– Am. Mineral., 95, 185–187. doi: 10.2138/
am.2010.3371
WILSON, M. (1989): Igneous Petrogenesis.– Unwin Hyman Ltd., London,
466 p. doi: 10.1007/978-1-4020-6788-4
ONLINE