Impact of coal depository and slag disposal from the Plomin thermal power plant on soil composition: insights from geochemical, mineralogical, and organic petrological analyses, Istria, Croatia
Main Article Content
Abstract
The potential impact of the open coal depository and the slag disposal of the Plomin thermal power plant (PTPP) on the composition of the surrounding soils was investigated. A comprehensive approach taken included analyses of mineral composition, potentially toxic element content, their bonding properties, distribution to specific geochemical fractions in the soil and investigation of the soil organic petrology and geochemistry. The Cambisols at two sampling sites exhibited a coal dust-covered upper horizon, which led us to consider these soil profiles as Technosol over Cambisol. For practical reasons, we have used the terms Technosol and Cambisol for the upper and lower parts of these profiles respectively. These formations were developed by the long-term deposition of coal dust and slag particles originating from the open coal depository and slag disposal of the PTPP, and widespread wind dispersion. The Technosols, characterized by higher concentrations of lignite and lignite-subbituminous coal, showed elevated levels of C and S. Analysis of the slag sample revealed a mineral composition of mullite, tridymite, graphite, haematite and an amorphous phase, indicating material formation by high temperature coal combustion. The PTPP was identified as the main contributor to the elevated concentrations of Hg, Mo, Se, Sb, U and Cd. The Technosols showed a significant enrichment in Hg, Sb, Se, Mo and U compared to the Cambisols. In the Technosols, elements such as As, Cr, Cu, Fe, Ni and Zn were primarily associated with the organic and Fe-Mn fractions, whereas in the Cambisols these elements, (with the exception of Cu), are mainly associated with the organic and residual fractions. Cadmium, Mn and Pb were predominantly bound to the carbonate and Fe-Mn fractions in all the analyzed samples. The non-residual fraction has been proven to be the predominant repository for As, Zn and Ni in the Technosols and slag, and for Mn, Zn and Cd in the Cambisols. The total content of C and S in the soils and their ratio (C/S) confirmed the higher contamination of soils in the vicinity of the PTPP with coal material. Detection of the coke and soot in the slag sample substantiated its composition as bottom coal ash. In addition, the presence of the bottom coal ash particles in the Cambisol underlined the airborne dispersal of the slag and its integration into the soil composition.
Downloads
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors have copyright and publishing rights on all published manuscripts.
References
BOGUNOVIĆ, M., VIDAČEK, Ž., RACZ, Z., HUSNJAK, S., ŠPOLJAR, A. & SRAKA, M. (1998): FAO/UNESCO Croatian soil map, small scale 1:1.000,000.– University of Zagreb, Faculty of Agriculture, project Monitoring Agriculture with Remote Sensing.
BRINDLEY, G.W. & BROWN, G. (1980): Crystal Structures of Clay Minerals and Their X ray Identification.– Mineralogical Society of Great Britain and Ireland, London. doi: 10.1180/mono-5
BROWN, G. (1961): The X-ray Identification and Crystal Structures of Clay Minerals.– Mineralogical Society, London.
BULLOCK, P., FEDOROFF, N., JONGERIUS, A., STOOPS, G., TURSINA, T. & BABEL, U. (1985): Handbook for Soil Thin Section description.– Waine Research, Albrighton, 152 pp.
DURN, G. (2003): Terra Rossa in the Mediterranean Region: Parent Materials, Composition and Origin.– Geologia Croatica, 56/1, 83–100. doi: 10.4154/GC.2003.06
DURN, G., SLOVENEC, D. & ČOVIĆ, M. (2001): Distribution of Iron and Manganese in Terra Rossa from Istria and its Genetic Implications.– Geologia Croatica, Zagreb, 54/1, 27–36. doi: 10.4154/GC.2001.03
ESPITALIE, J., DEROO, G. & MARQUIS, F. (1985): Rock Eval pyrolysis and its applications.– Institut Francais du Petrole.
FAO (2006): Guidelines for soil description, 4th edition.– FAO, Rome, 97 p.
FIKET, Ž., MEDUNIĆ, G. & KNIEWALD, G. (2016): Rare earth elements distribution in soil nearby thermal power plant.– Environ. Earth. Sci. 75, 598. doi: 10.1007/s12665-016-5410-2
FILIPČIĆ, A. (1992): Klima Hrvatske.– Geografski horizonti, 38/2, 26–35.
FOLK, R.L. (1980): Petrology of Sedimentary Rocks.– Hemphill Publishing, Austin, TX, 182 p.
FUGE, R. (2005): Anthropogenic Sources.– In: SELINUS O. (ed.): Essentials of Medical Geology – Impacts of the Natural Environment on Public Health, British Geological Survey, 43–60.
HALL, G.E.M., VAIVE, J.E., BEER, R. & HOASHI, M. (1996): Selective leaches revisited, with emphasis on the amorphous Fe oxyhydroxide phase extraction.– Journal of Geochemical Exploration, 56/1, 59–78. doi: 10.1016/0375-6742(95)00050-X
HALAMIĆ, J. & MIKO, S. (ed.) (2009): Geokemijski atlas Republike Hrvatske (Geochemical map of Republic of Croatia).– Hrvatski geološki institut (Croatian Geological Survey), Zagreb, 87 p.
KEATING, M. (2001): Cradle to Grave: The Environmental Impacts from Coal.– Clean Air Task Force, Boston, 8 p.
LI, Z., MA, Z., VAN DER KUIJP, T.J., YUAN, Z. & HUANG, L. (2014): A review of soil heavy metal pollution from mines in China: pollution and health risk assessment.– Science of the total environment, 468, 843–853. doi: 10.1016/j.scitotenv.2013.08.090
MALENŠEK, N., MEDUNIĆ, G., LOJEN, S., & ZUPANČIČ, N. (2017): Sulphur isotopes in soil around the thermoelectric power plant Plomin (Croatia).– In: IONETE, R.(ed.): Book of Abstract: ESIR Isotope Workshop XIV, Băile Govora, Vâlcea, 133–134.
MEDUNIĆ, G., AHEL, M., BOŽIČEVIĆ MIHALIĆ, I., GAURINA SRČEK, V., KOPJAR, N., FIKET, Ž., BITUHE, T. & MIKAC, I. (2016a): Toxic airborne S, PAH, and trace element legacy of the superhigh-organic-sulfur Raša coal combustion: Cytotoxicity and genotoxicity assessment of soil and ash.– Science of the Total Environment 566–567, p. 306–319.
MEDUNIĆ, G., RAĐENOVIĆ, A., BAJRAMOVIĆ, M., ŠVEC, M. & TOMAC, M. (2016b): Once grand, now forgotten: What do we know about the superhigh-organic-sulfur Raša coal?– Rudarsko-geološko-naftni zbornik, 31/3, doi: 10.17794/rgn.2016.3.3
MIKO, S., DURN, G., ADAMCOVÁ, R., ČOVIĆ, M., DUBÍKOVÁ, M., SKALSKÝ, R., KAPELJ, S. & OTTNER, F. (2003): Heavy metal distribution in karst soils from Croatia and Slovakia.– Environmental Geology, 45, 262–272.
MOORE, D.M. & REYNOLDS, R.C. jr. (1997): X-Ray Diffraction and the Identification and Analysis of Clay Minerals. 2nd ed.– Oxford University Press, Oxford.
OGRIN, D. (1995): Podnebje Slovenske Istre.– Annales, Koper, 381 pp.
OVEC – OHIO VALLEY ENVIRONMENTAL COALITION (2009): Heavy Metals Naturally Present in Coal & Coal Sludge.– Sludge Safety Project.
PROHIĆ, E. & MIKO, S. (1998): Distribution of selected elements in soils in the vicinity of coal burning power plant ''Plomin'', Istria, Croatia. Erdwissenschaftliche Aspekte des Umweltschutzes, Tagungsband.– In: SAUER, D. (ed): Österriechisches Forschungs- und Prüfzentrum Arsenal Ges. m. b., Wien, 319–324.
Regulations on Agricultural Land Protection against Pollution.– Ministry of Agriculture, Republic of Croatia, 2014. index: NN 9/14)
RODRIGUEZ-IRURETAGOIENA, A., DE VALLEJUELO, S.F.O., GREDILLA, A., RAMOS, C.G., OLIVEIRA, M.L.S., ARANA, G., DE DIEGO, A., MADARIAGA, J.M. & SILVA, L.F.O. (2015): Fate of hazardous elements in agricultural soils surrounding a coal power plant complex from Santa Catarina (Brazil).– Science of the Total Environment, 508, 374–382. doi: 0.1016/j.scitotenv.2014.12.015
SCHWAB, K.W. (1990): Visual kerogen assessment.– In: Int. Symposium on organic petrology, Zeist, 10-14.
SHAMSHAD, A., FULEKAR, M.H. & BHAWANA, P. (2012): Impact of Coal Based Thermal Power Plant on Environment and its Mitigation Measure.– International Research Journal of Environment Sciences, 1/4, 60–64.
SINGER, A., SCHWERTMANN, U. & FRIEDL, J. (1998): Iron Oxide Mineralogy of Terre Rosse and Rendzinas in relation to their moisture and temperature regimes.– European Journal of Soil Science, 49, 385–395. Doi: 10.1046/j.1365-2389.1998.4930385.x
STACH, E., MACKOWSKY, M.T.H., TEICHMÜLLER, M., TAYLOR, G.H., CHANDRA, D. & TEICHMÜLLER, R. (1982): Coal Petrology.– Gebrüder Borntraeger, Berlin-Stuttgart, 535 p.
STOOPS, G. (2003): Guidelines for Analysis and Description of Soil and Regolith Thin Sections.– Soil Science Society of America, Inc. Madison, Wisconsin.
SUN, R., LIU, G., ZHENG, L., & CHOU, C. L. (2010): Geochemistry of trace elements in coals from the Zhuji Mine, Huainan Coalfield, Anhui, China.– International Journal of Coal Geology, 81/2, 81–96. doi: 10.1016/j.coal.2009.12.001
TAYLOR, G.H., TEICHMÜLLER, M., DAVIS, A., DIESSEL, C.F.K., LITTKE, R. & ROBERT, P. (1998): Organic Petrology.- Gebrüder Borntraeger, Berlin-Stuttgart, 704 p.
TESSIER, A., CAMPBELL, P.G.C. & BISSON, M. (1979): Sequential Extraction Procedure for the Speciation of Particulate Trace Metals.– Analytical Chemistry, 51/7, 844–851. doi: 10.1021/ac50043a017
THOREZ, J. (1975): Phyllosilicates and clay minerals: A laboratory handbook for their X-ray diffraction analysis.– Editions G. Lelotte, Liege.
TOPPIN ORDING, E. (2009): Heavy Metals and Coal: Carbon Footprint Aside, Coal is not Environmentally Friendly.– Suite 101.
TRIBUTH, H. & LAGALY, G. (1986): Aufbereitung und Identifizierung von Boden- und Lagerstättentonen: I. Aufbereitung der Proben im Labor.– GIT Fachz. Lab. 30, 524–529.
VASSILEV, S.V., MENENDEZ, R., ALVAREZ, D., DIAZ-SOMOANO, M. & MARTINEZ- TARAZONA, M.R. (2003): Phase-mineral and chemical composition of coal fly ashes as a basis for their multicomponent utilization. 1. Characterization of feed coals and fly ashes.– Fuel, 82/14, 1793–1811. doi: 10.1016/S0016-2361(03)00123-6
VELIĆ, I., TIŠLJAR, J., MATIČEC, D. & VLAHOVIĆ, I. (1995): Opći prikaz geološke građe Istre.– In: VLAHOVIĆ, I. & VELIĆ, I. (ed-): Excursion guidebook; First Croatian Geological Congress, Zagreb, 5–30.
WHITE, S.C. & CASE, E.D. (1990): Characterization of fly ash from coal-fired power plants.- J. Mater. Sci. 25, 5215–5219. doi: 10.1007/BF00580153.
WILSON, M.J. (1987): A Handbook of Determinative Methods in Clay Mineralogy.– Verlag Blackie, Glasgow and London, 308 p.