The influence of weathering and pedogenesis on the geochemical record of Miocene marls and Plio-Quaternary sediments, Medvednica Mt., Croatia
Main Article Content
Abstract
The geochemical signature of weathering and pedogenesis in a temperate humid climate on two parent material types in the foothills of Medvednica Mt. was studied. Five soil profiles on Miocene marls and three sections of Plio-Quaternary (PlQ) proluvial sediments with overlying soil and weathered material were analyzed. The (clay) mineralogy of all profiles and sections had been determined in previous studies. The chemical composition of the samples was determined by inductively coupled plasma emission spectroscopy (ICP-OES) and inductively coupled plasma mass spectroscopy (ICP-MS). Poorly ordered Fe and Mn oxides were determined in the PlQ sediment and overlying soil samples by atomic absorption spectroscopy (AAS), after oxalate dissolution in the dark. The concentrations and element ratios were used to determine element enrichment/mobility and intensity of chemical weathering, material provenance, and to compare the geochemical signatures with previously obtained clay mineralogy results. Trace elements in the Miocene marls, including rare earth elements (REE), indicate the continental origin of the marl siliciclastic component, while more scattered geochemical data of the PlQ sediments reflect their proluvial/torrential nature. The mass transfer coefficient (τ) for major elements and element ratios of the Miocene marl profiles indicate chemical weathering and pedogenesis of lower intensity. The geochemistry of these samples shows homogeneity within the profiles. In the geochemical signature of the PlQ sections, a chaotic proluvial deposition of the material is visible, as well as the heterogeneity with the overlying soil and weathered material. Overall, the geochemistry results largely support the clay mineralogy of the samples and demonstrate how a multiproxy approach can help test hypotheses about past environments and provide valuable additional information for complex paleoenvironmental studies.
Downloads
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors have copyright and publishing rights on all published manuscripts.
References
BAKRAČ, K., KOCH, G. & SREMAC, J. (2012): Middle and Late Miocene palynological biozonation of the south-western part of Central Paratethys (Croatia).– Geol. Croat., 65, 207–222. doi: 10.4154/gc.2012.12
BANWART, S., MENON, M., BERNASCONI, S. M., BLOEM, J., BLUM, W. E. H., SOUZA, D. M., DAVIDSDOTIR, B., DUFFY, C., LAIR, G.J., KRAM, P., LAMACOVA, A., LUNDIN, L., NIKOLAIDIS, N.P., NOVAK, M., PANAGOS, P., RAGNARSDOTTIR, K.V., REYNOLDS, B., ROBINSON, D., ROUSSEVA, S., de RUITER, P., VAN GAANS, P., WENG, L., WHITE, T. & ZHANG, B. (2012): Soil processes and functions across an international network of Critical Zone Observatories: Introduction to experimental methods and initial results.– Comptes Rendus - Geosci., 344, 758–772. doi: 10.1016/j.crte.2012.10.007
BASCH, O. (1981): Osnovna geološka karta SFRJ 1:100 000. List Ivanić Grad L33-81 [Basic geological map of SFRY 1:100 000, Ivanić Grad sheet – in Croatian] - Geološki zavod, Zagreb, Savezni geološki zavod, Beograd.
BERGAYA, F., LAGALY, G. & VAYER, M. (2006): Cation and Anion Exchange.– In: BERGAYA, F., THENG, B.K.G. & LAGALY, G. (eds.): Handbook of Clay Science: Developments in Clay Science, Vol. 1. Elsevier, 979–1001. doi: 10.1016/S1572-4352(05)01036-6
BHATIA, M.R. & CROOK, K.A.W. (1986): Trace element characteristics of graywackes and tectonic setting discrimination of sedimentary basins.– Contrib. to Mineral. Petrol., 92, 181–193. doi: 10.1007/BF00375292
BŁAŻEJOWSKI, B., PSZCZÓŁKOWSKI, A., GRABOWSKI, J., WIERZBOWSKI, H., DECONINCK, J.-F., OLEMPSKA, E., TEODORSKI, A. & NAWROCKI, J. (2023): Integrated stratigraphy and clay mineralogy of the Owadów–Brzezinki section (Lower–Upper Tithonian transition, central Poland): implications for correlations between the Boreal and the Tethyan domains and palaeoclimate.– J. Geol. Soc. London, 180. doi: 10.1144/jgs2022-073
BRIMHALL, G.H. & DIETRICH, W.E. (1987): Constitutive mass balance relations between chemical composition, volume, density, porosity, andstraininmetasomatic hydrochemicalsys- tems: results on weathering and pedogenesis.– Geochim. Cosmochim. Acta, 51, 567–587. doi: 10.1016/0016-7037(87)90070-6
BUGGLE, B., GLASER, B., HAMBACH, U., GERASIMENKO, N. & MARKOVIĆ, S. (2011): An evaluation of geochemical weathering indices in loess-paleosol studies.– Quat. Int., 240, 12–21. doi: 10.1016/j.quaint.2010.07.019
CHADWICK, O.A., BRIMHALL, G.H. & HENDRICKS, D.M. (1990): From a black to a gray box – a mass balance interpretation of pedogenesis.– Geomorphology, 3/3, 369-390. doi: 10.1016/0169-555X(90)90012-F
CONDIE, K.C. (1993): Chemical composition and evolution of the upper continental crust: Contrasting results from surface samples and shales.– Chem. Geol., 104, 1–37. doi: 10.1016/0009-2541(93)90140-E
CORENTIN, P., PUCÉAT, E., PELLENARD, P., GUIRAUD, M., BLONDET, J., BAYON, G. & ADATTE, T. (2023): Late Cretaceous evolution of chemical weathering at the northeastern South American margin inferred from mineralogy and Hf-Nd isotopes.– Mar. Geol., 455, 106968. doi: 10.1016/j.margeo.2022.106968
Croatian Geological Survey (2009): Geological Map of the Republic of Croatia 1:300000.– Croatian Geological Survey, Department of Geology, Zagreb.
DINIS, P. A., GARZANTI, E., HAHN, A., VERMEESCH, P. & CABRAL-PINTO, M. (2020): Weathering indices as climate proxies. A step forward based on Congo and SW African river muds.– Earth-Science Rev., 201. doi: 10.1016/j.earscirev.2019.103039
FEDO, C.M., NESBITT, W.H. & YOUNG, G.M. (1995): Unraveling the effects of potassium metasomatism in sedimentary rocks and paleosols, with implications for paleoweathering conditions and provenance.– Geology, 23, 921. doi: 10.1130/0091-7613(1995)023<0921:UTEOPM>2.3.CO;2
FRINGS, P.J. & BUSS, H.L. (2019): Central Role of Weathering in the Geosciences Planetary Weathering Thermostats Plants, Ecosystems, and Weathering Sculpting Earth’s Surface Combating Climate Change: Enhanced Weathering Palaeoweathering Weathering Across the Earth Sciences.– Elem. An Int. Mag. Mineral. Geochemistry, Petrol,. 15, 229–234. doi: 10.2138/gselements.15.4.229
GALOVIĆ, L. & PEH, Z. (2014): Eolian contribution to geochemical and mineralogical characteristics of some soil types in Medvednica Mountain, Croatia.– Catena, 117, 145–156. doi: 10.1016/j.catena.2013.12.016
GODOY, L.H., SARDINHA, D. de S. & MORENO, M.M.T. (2017): Major and trace elements redistribution in weathered claystones from the Corumbataí Formation, Paraná Sedimentary Basin, São Paulo, Brazil.– Brazilian J. Geol., 47, 615–632. doi: 10.1590/2317-4889201720170086
GRIZELJ, A., PEH, Z., TIBLJAŠ, D., KOVAČIĆ, M. & KUREČIĆ, T. (2017): Mineralogical and geochemical characteristics of Miocene pelitic sedimentary rocks from the south-western part of the Pannonian Basin System (Croatia): Implications for provenance studies.– Geosci. Front., 8, 65–80. doi: 10.1016/j.gsf.2015.11.009
GVERIĆ, Z., RUBINIĆ, V., KAMPIĆ, Š., VRBANEC, P., PARADŽIK, A. & TOMAŠIĆ, N. (2022): Clay mineralogy of soils developed from Miocene marls of Medvednica Mt., NW Croatia: Origin and transformation in temperate climate.– Catena, 216, 106439. doi: 10.1016/j.catena.2022.106439
GVERIĆ, Z., TOMAŠIĆ, N., KISIEL, M., MAJ-SZELIGA, K., SKIBA, M. & RUBINIĆ, V. (2023): The effect of weathering on clay mineralogy of Plio‑Quaternary sediments and the overlying material on SE slopes of Medvednica Mt., Croatia.– Environ. Earth Sci., 82, 1–15. doi: 10.1007/s12665-023-11042-7
HALL, K., THORN, C. & SUMNER, P. (2012): On the persistence of “weathering”.– Geomorphology, 149–150, 1–10. doi: 10.1016/j.geomorph.2011.12.024
HARNOIS, L. (1988): The CIW index: A new chemical index of weathering.– Sediment. Geol., 55, 319–322. doi: 10.1016/0037-0738(88)90137-6
HARZHAUSER, M., LATAL, C. & PILLER, W.E. (2007): The stable isotope archive of Lake Pannon as a mirror of Late Miocene climate change.– Palaeogeogr. Palaeoclimatol. Palaeoecol., 249, 335–350. doi: 10.1016/j.palaeo.2007.02.006
HARZHAUSER, M., PERESSON, M., BENOLD, C., MANDIC, O., ĆORIĆ, S. & De LANGE, G.J. (2023): Environmental shifts in and around Lake Pannon during the Tortonian Thermal Maximum based on a multi-proxy record from the Vienna Basin (Austria, Late Miocene, Tortonian).– Palaeogeogr. Palaeoclimatol. Palaeoecol., 610. doi: 10.1016/j.palaeo.2022.111332
HEIDARI, A., OSAT, M. & KONYUSHKOVA, M. (2022): Geochemical indices as efficient tools for assessing the soil weathering status in relation to soil taxonomic classes.– Catena, 208, 105716. doi: 10.1016/j.catena.2021.105716
JIMÉNEZ-MORENO, G., RODRÍGUEZ-TOVAR, F.J., PARDO-IGÚZQUIZA, E., FAUQUETTE, S., SUC, J.P. & MÜLLER, P. (2005): High-resolution palynological analysis in late early-middle Miocene core from the Pannonian Basin, Hungary: Climatic changes, astronomical forcing and eustatic fluctuations in the Central Paratethys.– Palaeogeogr. Palaeoclimatol. Palaeoecol., 216, 73–97. doi: 10.1016/j.palaeo.2004.10.007
KOVAČIĆ, M., HORVAT, M., PIKIJA, M. & SLOVENEC, DA. (2011): Composition and provenance of neogene sedimentary rocks of Dilj gora mt. (south Pannonian Basin, Croatia).– Geol. Croat., 64, 121–132. doi: 10.4154/gc.2011.10
KUREČIĆ, T., KOVAČIĆ, M. & GRIZELJ, A. (2021): Mineral assemblage and provenance of the Pliocene Viviparus beds from the area of Vukomeričke gorice, central Croatia.– Geol. Croat., 74, 253–271. doi: 10.4154/gc.2021.16
LOZIĆ, S. (2001): Multivariate Approach to Relief Classification and Typology - the example of North-Western Croatia.– Acta Geogr. Croat., 35, 19–42.
MARKOVIĆ, F., KUIPER, K., ĆORIĆ, S., HAJEK-TADESSE, V., HERNITZ KUČENJAK, M., BAKRAČ, K., PEZELJ, Đ. & KOVAČIĆ, M. (2021): Middle Miocene marine flooding: New40 Ar/39Ar age constraints with integrated biostratigraphy on tuffs from the north Croatian basin.– Geol. Croat., 74, 237–252. doi: 10.4154/gc.2021.18
McDONOUGH, W. F. & SUN, S. (1995): The composition of the Earth.– Chem. Geol., 120, 223–253. doi: 10.1016/0009-2541(94)00140-4
McLENNAN, S.M. (1993): Weathering and Global Denudation.– J. Geol. 101, 295–303. doi: 10.1086/648222
MIHALIĆ ARBANAS, S., KRKAČ, M. & BERNAT, S. (2016): Application of advanced technologies in landslide research in the area of the City of Zagreb (Croatia, Europe).– Geol. Croat., 69/2, 231–243. doi: 10.4154/gc.2016.18
NESBITT, H.W. & MARKOVICS, G. (1997): Weathering of granodioritic crust, long-term storage of elements in weathering profiles, and petrogenesis of siliciclastic sediments.– Geochim. Cosmochim. Acta, 61, 1653–1670. doi: 10.1016/s0016-7037(97)00031-8
NESBITT, H.W., MARKOVICS, G. & PRICE, R.C. (1980): Chemical processes affecting alkalis and alkaline earths during continental weathering.– Geochim. Cosmochim. Acta, 44, 1659–1666. doi: 10.1016/0016-7037(80)90218-5
NESBITT, H.W. & YOUNG, G.M. (1982): Early Proterozoic climates and plate motions inferred from major element chemistry of lutites.– Nature, 299, 715–717. doi: 10.1038/299715a0
PAVELIĆ, D. & KOVAČIĆ, M. (2018): Sedimentology and stratigraphy of the Neogene rift-type North Croatian Basin (Pannonian Basin System, Croatia): A Review.– Mar. Pet. Geol., 91, 455–469. doi: 10.1016/j.marpetgeo.2018.01.026
PAVELIĆ, D., KOVAČIĆ, M., BANAK, A., JIMÉNEZ-MORENO, G., MARKOVIĆ, F., PIKELJ, K., VRANJKOVIĆ, A., PREMUŽAK, L., TIBLJAŠ, D. & BELAK, M. (2016): Early Miocene European loess: A new record of aridity in southern Europe.– Bull. Geol. Soc. Am., 128, 110–121. doi: 10.1130/B31280.1
PERKOVIĆ, I., PERNAR, N., BAKŠIĆ, D., GLAMOČLIJA, N. & ROJE, V. (2017): The effect of parent material on physical and mineral soil properties on Medvednica nature park.– Šumar. list, 141, 237–245. doi: 10.31298/sl.141.5-6.2
PEURANIEMI, V. & PULKKINEN, P. (1993): Preglacial weathering crust in Ostrobothnia, western Finland, with special reference to the Raudaskylä occurrence.– Chem. Geol., 107, 313–316. doi: 10.1016/0009-2541(93)90198-R
PRISTA, G.A., AGOSTINHO, R.J. & CACHÃO, M.A. (2015): Observing the past to better understand the future : a synthesis of the Neogene climate in Europe and its perspectives on present climate change.– Open Geosci., 65–83. doi: 10.1515/geo-2015-0007
ROSER, B.P. & KORSCH, R.J. (1986): Determination of tectonic setting of sandstonemudstone suites using SiO2 content and K2O/Na2O ratio.– J. Geol., 94, 635–650. doi: 10.1086/629071
ROYDEN, L., HORVÁTH, F., NAGYMAROSY, A. & STEGENA, L. (1983): Evolution of the Pannonian Basin System 2. Subsidence and Thermal History.– Tectonics, 2, 91–137. doi: 10.1029/TC002i001p00091
RUBINIĆ, V., GALOVIĆ, L., LAZAREVIĆ, B., HUSNJAK, S. & DURN, G. (2018): Pseudogleyed loess derivates – The most common soil parent materials in the Pannonian region of Croatia.– Quat. Int., 494, 248–262. doi: 10.1016/j.quaint.2017.06.044
RUDNICK, R.L. & GAO, S. (2014): Composition of the Continental Crust.– In: HOLLAND, H.D. & TUREKIAN, K.K. (eds.): Treatise on Geochemistry. Elsevier, 1–51. doi: 10.1016/B978-0-08-095975-7.00301-6
SCHWERTMANN, U. (1964): Differenzierung der Eisenoxide des Bodens durch Extraktion mit Ammoniumoxalat-Lösung.– Zeitschrift für Pflanzenernährung, Düngung, Bodenkd., 105, 194–202. doi: 10.1002/jpln.3591050303
SHELDON, N.D. & TABOR, N.J. (2009): Quantitative paleoenvironmental and paleoclimatic reconstruction using paleosols.– Earth-Science Rev., 95, 1–52. doi: 10.1016/j.earscirev.2009.03.004
ŠIKIĆ, K., BASCH, O. & ŠIMUNIĆ, A. (1978): Osnovna geološka karta SFRJ 1:100.000 - list Zagreb L33-80 [Basic Geological Map of SFRY 1:100000, sheet Zagreb L33-80 – in Croatian].– Geological Department of Serbia, Belgrade.
ŠIKIĆ, K. (1995) Geološki vodič Medvednice [Geological guide of Medvednica – in Croatian].– Institut za geološka istraživanja, Zagreb, 199 p.
SZABÓ, P., KOVÁCS, J., KOCSIS, L., VENNEMANN, T., DOMINGO, L., ÚJVÁRI, G., HALMAI, Á., PIRKHOFFER, E. & CODREA, V. (2022): Pliocene - Early Pleistocene continental climate and vegetation in Europe based on stable isotope compositions of mammal tooth enamel.– Quat. Sci. Rev., 288, 107572. doi: 10.1016/j.quascirev.2022.107572
TABOADA, T., RODRÍGUEZ-LADO, L., FERRO-VÁZQUEZ, C., STOOPS, G. & MARTÍNEZ CORTIZAS, A. (2016): Chemical weathering in the volcanic soils of Isla Santa Cruz (Galápagos Islands, Ecuador).– Geoderma, 261, 160–168. doi: 10.1016/j.geoderma.2015.07.019
TOMLJENOVIĆ, B. (2002): Strukturne značajke Medvednice i Samoborskog gorja [Structural features of Medvednica and Samobor Mts – in Croatian].– Unpublished PhD Thesis, University of Zagreb, 208 p.
TOMLJENOVIĆ, B. & CSONTOS, L. (2001): Neogene-quaternary structures in the border zone between Alps, Dinarides and Pannonian Basin (Hrvatsko zgorje and Karlovac basins, Croatia).– Int. J. Earth Sci., 90, 560–578. doi: 10.1007/s005310000176
TOMLJENOVIĆ, B., CSONTOS, L., MÁRTON, E. & MÁRTON, P. (2008): Tectonic evolution of the northwestern internal Dinarides as constrained by structures and rotation of Medvednica Mountains, North Croatia.– Geol. Soc. Spec. Publ., 298, 145–167. doi: 10.1144/SP298.8
VAN GELDER, I.E., MATENCO, L., WILLINGSHOFER, E., TOMLJENOVIĆ, B., ANDRIESEN, P.A.M., DUCEA, M.N., BENIEST, A. & GRUIĆ, A. (2015): The tectonic evolution of a critical segment of the Dinarides- Alps connection: Kinematic and geochronological inferences from the Medvednica Mountains, NE Croatia.– Tectonics, 34, 1952–1978. doi: 10.1002/2015TC003937
WEI, G., LI, X. H., LIU, Y., SHAO, L. & LIANG, X. (2006): Geochemical record of chemical weathering and monsoon climate change since the early Miocene in the South China Sea.– Paleoceanography, 21, 1–11. doi: 10.1029/2006PA001300
YANG, J., CAWOOD, P.A., DU, Y., LI, W. & YAN, J. (2016): Reconstructing Early Permian tropical climates from chemical weathering indices.– Geol. Soc. Am. Bull., 128/5-6, 739–751. doi: 10.1130/B31371.1
ZANINOVIĆ, K., GAJIĆ-ČAPKA, M., PERČEC TADIĆ, M., VUČETIĆ, M., MILKOVIĆ, J., BAJIĆ, A, CINDRIĆ, K., CVITAN, L., KATUŠIN, Z., KAUČIĆ, D., LIKSO, T., LONČAR, E., LONČAR, Ž., MIHAJLOVIĆ, D., PANDŽIĆ, K., PATARČIĆ, M., SRNEC, L. & VUČETIĆ, V. (2008): Klimatski atlas Hrvatske / Climate Atlas of Croatia 1961-1990., 1971-2000.– Meteorological and Hydrological Service of Croatia, Zagreb.
ZOLLINGER, B., ALEWELL, C., KNEISEL, C., BRANDOVÁ, D., PETRILLO, M., PLÖTZE, M., CHRISTL, M. & EGLI, M. (2017): Soil formation and weathering in a permafrost environment of the Swiss Alps: a multi-parameter and non-steady-state approach.- Earth Surf. Process.– Landforms, 42, 814–835. doi: 10.1002/esp.4040