Palaeoenvironmental reconstruction of Holocene calcareous tufas distributed over a manganese deposit in Mexico

Main Article Content

Maria Jesus Puy-Alquiza
Raúl Miranda-Avilés
Miren Yosune Miranda Puy
Pooja Vinod Kshirsagar
Gabriela A. Zanor
Ma. Cristina Del Rincon- Castro

Abstract

The Holocene calcareous tufa deposits are located in the north-central sector of the state of Hidalgo, Mexico.  These deposits outcrop on the Upper Jurassic Chipoco Formation in the Molango Manganese District.  Calcareous tufa deposits correspond to carbonate formations of inactive tufas disconnected from the current  hydrological network. To better understand the textural, geochemical, and biological characteristics and  environmental conditions during their formation, a detailed study involving field analysis, X-ray diffraction analysis, X-ray fluorescence analysis, and morphometric analysis with light microscopy, and scanning electron  microscopy was carried out. Similarly, 14C analysis was undertaken to determine the age of the deposit. On this  basis, two biofacies were defined, one with stem structures and the other with Phyto clasts, bryophytes  (Plagiomnium cuspidatum), and copepods, limited both at the base and the top by lenticular-shaped erosive  surfaces and sigmoidal clinoforms. These bio facies formed in lacustrine and paludal environments, and barrier  waterfalls. From a geomorphological point of view, the accumulations of these calcareous tufas originated on  slopes and/or at the foot of karstic springs, where the accumulation of material originated from the height of  the spring with respect to the bottom of the valley, giving rise to a set of stepped tuffaceous plains with a  wedge-shaped profile, colonized by important masses of bryophyte mounds, copepods, and vascular plants.  This suggests a swampy environment where sedimentation took place in shallow water accumulations, where  there is clear evidence of exposure and pedogenetic modification, indicating wet and dry episodes that translate  into seasonal fluctuations in the water table. Six mineral phases were observed including silicates,  carbonates and arsenates. The 14C analysis indicates that the plant found in the charcoal sample within the  calcareous tufa deposit is of Holocene age. 

Downloads

Download data is not yet available.

Article Details

Section
Original Scientific Papers

References

ALONSO ZARZA, A.M. (2003): Palaeoenvironmental significance of palustrine carbonates and calcretes in the geological record.– Earth. Sci. Rev., 60, 261–298. doi: 10. 1016/S0012-8252(02)00106-X

ARENAS ABAD, C., VÁZQUEZ-URBEZ, M., PARDO-TIRAPU, G. & SANCHO-MARCÉN, C. (2010): Fluvial and associated carbonate deposits.– Dev. Sedimentol., 61, 133–175. doi: 10.1016/S0070-4571(09)06103-2

ARENAS ABAD, C. (2017): Tobas y facies asociadas. Una factoría de carbonatos continentales en el Cuaternario.– Enseñ. Cien. Tierra., 25, 65–73. doi: 471050/110020171023

ARENAS, C., OSÁCAR, C., SANCHO, C., VÁZQUEZ-URBEZ, M., AUQUÉ, L. & PARDO, G. (2010): Seasonal Pentecost record from recent fluvial tufa deposits (Monasterio de Piedra, NE Spain).– Sedimentol. Stable. Isot. Data., Geological Society, London, Special Publications., 336/1, 119–142. doi: 10.1144/SP336.7

ARENAS, C., VÁZQUEZ-URBEZ, M., AUQUÉ, L., SANCHO, C., OSÁ-CAR, C. & PARDO, G. (2014): Intrinsic and extrinsic controls of spatial and temporal variations in modern fluvial tufa sedimentation: A thirteen-year record from a semi-arid environment.– Sedimentol., 61, 90–132. doi: 10.1111/sed.12045

AUQUÉ, L.F., ACERO, P., GIMENO, M.J., GÓMEZ, J.B. & ASTA, M.P. (2009): Hydrogeochemical modeling of a thermal system and lessons learned for CO2 geologic storage.– Chemi. Geol., 268/3, 324–336. doi: 10.1016/j.chemgeo.2009.09.011

AUQUÉ, L., ARENAS, C., OSÁCAR, C., PARDO, G., SANCHO, C. & VÁZQUEZ-URBEZ, M. (2013): Tufa sedimentation in changing hydrological conditions: the River Mesa (Spain).– Geol. Acta., 11/1, 85–102. doi: 10.1344/105.000001774

BUCCINO, G., D’ARGENIO, B., FERRERI, V., BRANCACCIO, L., FERRERI, M., PANICHI, C. & STANZIONE, D. (1978): I travertini della Bassa Valle del Tanagro (Campania); studio geomorfologico, edimentológico e geochimic.– Boll. Soc. Geol. Ital., 97/4, 617–646. doi: 10.1016/0037-0738(90)90124-C

CAPEZZUOLI, E., GANDIN, A. & PEDLEY, M. (2014): Decoding tufa and travertine (freshwater carbonates) in the sedimentary record: The state of the art.– Sedimentol., 61/1, 1–21. doi: 10.1111/sed.12075

CARCAVILLA, L., DE LA HERA, Á., FIDALGO, C. & GONZÁLEZ, J.A. (2009): Formaciones tobáceas generadas por comunidades briofíticas en aguas carbonatadas.– In: VV.AA. Bases ecológicas preliminares para la conservación de los tipos de hábitat de interés comunitario en España.–Ministerio de Medio Ambiente y Medio Rural y Marino. Madrid, 62 p.

CARCAVILLA, L., VEGAS, J. & CABRERA, A.M. (2019): Establecimiento de una tipología específica de formaciones tobáceas. Serie. Metodologías para el seguimiento del estado de conservación de los tipos de hábitat.– Ministerio para la Transición Ecológica, Madrid, 20 p.

CARRILLO-MARTÍNEZ, M.& SUTER, M. (1982): Tectónica de los alrededores de Zimapán, Hidalgo, in Libro-guía de la Excursión Geológica a la Región de Zimapán y Áreas Circundantes Early.– In: ALCAYDE, M. & DE CSERNA, Z.: VI Convención geológica nacional. Sociedad Geológica Mexicana, Mexico, 1–20.

CHAFETZ, H.S., SRDOC, D. & HORVATINCIC, N. (1994): Diagenesis of Plitvice Lakes Waterfall and Barrier Travertine Deposits.– Geograph. Phys. Quat., 48/3, 247–255. doi: 10.7202/033006

DELLA PORTA, G. (2015): Carbonate build-ups in lacustrine, hydrothermal, and fluvial seƫ NGS: comparing depositional geometry, fabric types, and geochemical signature.– Geol. Soc., London, Special Publications, 418, SP418-4. doi:10.1144/SP418.4

DILSIZ, C. (2006): Conceptual hydrodynamic model of the Pamukkale hydrothermal field, southwestern Turkey, based on hydrochemical and isotopic data.– Hydrogeol. J., 14/4, 562–572. doi: 10.1007/s10040-005-0001-4

EGUILUZ DE ANTUÑANO, S., ARANDA GARCÍA, M. & MARRETT, R. (2000): Tectónica de la Sierra Madre Oriental, México.– Bol. Soc. Geol. Mex., 53, 1–26. doi: 10.18268/BSGM2000v53n1a1

FERNÁNDEZ-BADILLO, L., MANRÍQUEZ-MORÁN, N. L., CASTILLO- CERÓN, J. M., GOYENECHEA, I. (2016): Análisis herpetofaunístico de la zona árida del estado de Hidalgo.– Rev. Mex. Bio., 87/1, 156–170. doi: 10.1016/j.rmb.2016.01.009

FORD, T.D. & PEDLEY, H.M. (1996): A review of tufa and travertine deposits of the world.– Earth. Sci. Rev., 41/3–4, 117–175. doi: 10.1016/S0012-8252(96)00030-X

GRADZIŃSKI, M., HERCMAN, H., JAŚKIEWICZ, M. & SZCZUREK, S. (2013): Holocene tufa in the Slovak Karst: facies, sedimentary environments, and depositional history.– Geol. Quat., 57/4, 769–788. doi: 10.7306/gq.1131

GOLUBIĆ, S. (1969): Cyclic and noncyclic mechanisms in the formation of travertine.– Internationale Vereinigung für theoretische und angewandte Limnologie.– Verhandlungen, 17/2, 956–961. doi: 10.1080/03680770.1968.11895941

GRIFFITHS, H.I. & PEDLEY, H.M. (1995): Did changes in late Last Glacial and early Holocene atmospheric CO2 concentracions control rates of tufa precipitation.– The Holocene, 5/2, 238–242.

HERMOSO DE LA TORRE, C. & MARTÍNEZ-PÉREZ, J. (1972): Medición detallada de formaciones del Jurásico Superior en el frente de la Sierra Madre Oriental.– Bol. Asoc. Mex. Geol. Petroleros, 24/1–3, 45–63.

JONES, B. & RENAUT, R.W. (2010): Calcareous spring deposits in continental settings.– Dev. Sedimentol., 61, 177–224. d oi: 10.1016/S0070-4571(09)06104-4

KANO, A., MATSUOKA, J., KOJO, T. & FUJII, H. (2003). Origin of annual laminations in tufa deposits, southwest Japan.– Palaeogeol. Palaeoclimatol. Palaeoecol., 191/2, 243–262. doi: 10.1016/0031-0182(02)00717-4

LÓPEZ-RAMOS, E. (1972): Estudio del basamento ígneo y metamórfico de las zonas Norte y Poza Rica (entre Nautla, Ver. Y Jiménez, Tamps.).– Bol. Asoc. Mex. Geol. Petroleros., 24, 265–323.

MERZ-PREIß M. & RIDING R. (1999): Cyanobacterial tufa calcification in two freshwater streams: ambient environment, chemical thresholds, and biological processes.– Sediment. Geol., 126, 103–124. doi: 10.1016/S0037-0738(99)00035-4

MINISSALE, A. (2004): Origin, transport, and discharge of CO2 in central Italy.– Earth-Sci. Rev., 66/1, 89–141. doi: 10.1016/j.earscirev.2003.09.001

OCHOA-CAMARILLO, H.R. (1996): Aspectos bioestratigráficos, palaeoecológicos y tectónicos del Jurásico (anticlinorio de Huayacocotla) en la región d e M olango, H idalgo.– I n: G ÓMEZ-CABALLERO, A . & ALCAYDE-ORRACA, M. (eds.): II Convención sobre la Evolución Geológica de México y Recursos Asociados, Pachuca, Hidalgo, México. Universidad Autónoma del Estado de Hidalgo, Instituto de Investigaciones en Ciencias de la Tierra, UAEH, Instituto de Geología, UNAM, Simposio y Coloquio, Mexico.

OCHOA-CAMARILLO, H., BUITRÓN, B.E. & SILVA-PINEDA, A. (1998): Contribución al conocimiento de la bioestratigrafía, palaeoecología y tectónica del Jurásico (Anticlinorio de Huayacotla) en la región de Molango, Hidalgo, México.– Rev. Mex. Cien. Geol., 15/1, 57–63.

ORDÓÑEZ, S., MARƠ N, J.G., DEL CURA, M.G. & PEDLEY, H.M. (2005): Temperate and semi-arid tufas in the Pleistocene to Recent fluvial barrage system in the Mediterranean area: The Ruidera Lakes Natural Park (Central Spain).– Geomorphol., 69/1, 332–350. doi: 10.1016/j.geomorph.2005.02.002

PLATT, N.H. & WRIGHT, V.P. (1991): Lacustrine carbonates facies models, facies distributions, and hydrocarbon aspects.– In: ANADÓN, P., CABRERA, L. & KELTS, K. (eds.): Lacustrine facies analysis. Special Publication of the International Association of Sedimentologists. Ghent, Belgium. Inter. Assoc. Sedimentol., 13, 57–74. doi: 10.1002/9781444303919.ch3

PEDLEY, H.M. (1990): Classification and environmental models of cool freshwater tufas.– Sediment. Geol., 68, 143–154. doi: 10.1016/0037-0738(90)90124-C

PENTECOST, A. & VILES, H. (1994): A review and reassessment of travertine classification: Geography.– Phys. Quat., 48, 305–14. doi: 10.7202/033011ar

PENTECOST, A. & ZHAOHUI, Z. (2002): Bryophytes from some travertinedepositing sites in France and the UK: relationships with climate and water chemistry.– J. Bryol., 24/3, 233–241. doi: 10.1179/037366802125001402

PENTECOST, A., JONES, B. & RENAUT, R.W. (2003): What is a hot spring?– Canadian J. Earth. Scien., 40/11, 1443–1446. doi: 10.1139/e03-083

PENTECOST, A. (2005): Travertine.– Springer Berlín-Heidelberg. 445 p. doi: 10.3141/pp445A

PLATT, N.H. & WRIGHT, V.P. (1992): Palustrine carbonates and the Florida Everglades: towards an exposure index for the freshwater environment?–J. Sediment. Petrol., 62, 1058– 1071. doi: 10.1306/D4267A4B-2B26-11D7-8648000102C1865D

RUSSELL, I.C. (1883): Sketch of the geological history of Lake Lahonton.– U.S. Geology Survey Annu. Rep., 3, 189–235.

RUSSELL, I.C. (1889): Quatemary History of Mono Valley, California.– U.S. Geology Survey Annu. Rep., 8, 261–394.

SLACK, K.V. (1967): Physical and chemical description of Birch Creek, a travertine depositing stream, Inyo County, California.– US Government Printing Office. doi: 10.3133/pp549A

VILES, H.A., TAYLOR, M.P., NICOLL, K. & NEUMANN, S. (2007): Facies evidence of hydroclimatic regime shifts in tufa depositional sequences from the arid Naukluft Mountains, Namibia.– Sediment. Geol., 195/1, 39–53. doi: 10.1016/j.sedgeo.2006.07.007

VIOLANTE, C., FERRERI, V., D’ARGENIO, B. & GOLUBIC, S. (1994): Quaternary travertines at Rochetta a Volturno (Isernia, Central Italy). Facies analysis and sedimentary model of an organogenic carbonate system.– In: PreMeeting Fieldtrip Guidebook, A1, International Association of Sedimentologists, Ischia’94, 15th Regional Meeting, Italy, 5–23.