Hydrochemical characterization of a Dinaric karst catchment in relation to emerging organic contaminants
Main Article Content
Abstract
The main findings of a hydrochemical investigation conducted within a typical Dinaric karst catchment located in Southern Croatia are outlined. The studied aquifer is drained by the Jadro and Žrnovnica springs, which are important for the regional and local water supplies, respectively. Presumably, there is intercatchment groundwater flow coming from the neighbouring Cetina River catchment. Various factors governing aquifer hydrochemistry and their interplay with emerging organic contaminants (EOCs) that were detected at different water resources in ng/L concentrations was assessed. A total of 26 sampling campaigns (October 2019 – October 2022) were conducted at two springs, in a river and at a deep borehole, all representative of this complex hydrogeological system. Assessment of major ion constituents and saturation indices calculated with PHREEQC revealed the sampled water resources are of a Ca-HCO3 type due to the predominant weathering of the carbonate mineral calcite. Sharp spikes observed in chemographs indicated a highly karstified system with an effective conduit network allowing rapid spring responses to precipitation events. Water resources are of good chemical status, as affirmed by anthropogenic contamination indicators, with nitrates, chlorides and sulphates all below maximum threshold values. Strong positive correlations were found between EOCs concentration, number of detected compounds, and nitrates in the Cetina River, indicating a common origin, most likely wastewater. Identification of persistent EOCs including widely used repellent N,N-diethyl- metatoluamide (DEET) during base flow conditions and its strong positive correlation with the Ca2+ content in both the Cetina and Jadro samples, suggests potential storage in the epikarst and aquifer matrix. This coupling of conventional hydrochemical indicators and novel markers of anthropogenic impacts, including EOCs, in vulnerable karst water resources is a crucial advancement in the assessment and management of emerging environmental and potential human health risks. Such an approach is pivotal for the sustainable protection of hydrogeologically intricate sites.
Downloads
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors have copyright and publishing rights on all published manuscripts.
References
BONACCI, O., & ANDRIĆ, I. (2015): Karst spring catchment: an example from Dinaric karst.– Environ Earth Sci, 74/7, 6211–6223. doi: 10.1007/s12665-015-4644-8
BONACCI, O. & ROJE-BONACCI, T. (1997): Hidrološki vid određivanja biološkog minimuma rijeke Žrnovnice. [Hydrological aspects of determining the biological minimum of the Žrnovnica River – in Croatian].– Hrvat. Vode, 5, 1997, 339–349.
BGR, IAH, KIT, UNESCO (2017): World Karst Aquifer Map, 1:40 000 000. Berlin, Reading, Karlsruhe and Paris. URL: https://gdk.gdi-de.org/geonetwork/srv/api/records/473d851c-4694-4050-a37f-e421170eca8.
BRKIĆ, Ž., KUHTA, M., HUNJAK, T., & LARVA, O. (2020): Regional Isotopic Signatures of Groundwater in Croatia.– Water, 12/7. doi: 10.3390/w12071983
CAETANO BICALHO, C., BATIOT-GUILHE, C., SEIDEL, J.L., VAN EXTER, S. & JOURDE, H. (2012): Geochemical evidence of water source characterization and hydrodynamic responses in a karst aquifer.– J Hydrol, 450–451, 206–218. doi: 10.1016/j.jhydrol.2012.04.059
CELLE-JEANTON, H., EMBLANCH, C., MUDRY, J. & CHARMOILLE, A. (2003): Contribution of time tracers (Mg2+, TOC, δ13CTDIC, NO3−) to understand the role of the unsaturated zone: A case study – Karst aquifers in the Doubs valley, eastern France.– Geophys Res Lett, 30/6. doi: 10.1029/2002GL016781
CELLE-JEANTON, H., TRAVI, Y. & BLAVOUX, B. (2001): Isotopic typology of the precipitation in the Western Mediterranean Region at three different time scales.– Geophys Res Lett, 28/7, 1215–1218. doi: 10.1029/2000GL012407
CIZMAS, L., SHARMA, V.K., GRAY, C.M. & MCDONALD, T.J. (2015): Pharmaceuticals and personal care products in waters: occurrence, toxicity, and risk.– Environ Chem Lett, 13/4, 381–394. doi: 10.1007/s10311-015-0524-4
CLARK, I., & FRITZ, P. (1997): Environmental Isotopes in Hydrology.– Lewis Publication.
ĆUK ĐUROVIĆ, M., PETRIČ, M., JEMCOV, I., MULEC, J., GRUDNIK, Z. M., MAYAUD, C., BLATNIK, M., KOGOVŠEK, B. & RAVBAR, N. (2022): Multivariate Statistical Analysis of Hydrochemical and Microbiological Natural Tracers as a Tool for Understanding Karst Hydrodynamics (The Unica Springs, SW Slovenia).– Water Resour Res, 58/11, e2021WR031831. doi: 10.1029/2021WR031831
DANSGAARD, W. (1964): Stable isotopes in precipitation.– Tellus, 16/4, 436–468. doi: 10.1111/j.2153-3490.1964.tb00181.x
DINNO, A. (2017): Dunn.test: Dunn’s Test of Multiple Comparisons Using Rank Sums. https://cran.r-project.org/package=dunn.test
DIRECTIVE (EU) 2020/2184 of the European Parliament and of the Council of 16 December 2020 on the quality of water intended for human consumption.
DODGEN, L.K., KELLY, W.R., PANNO, S.V, TAYLOR, S.J., ARMSTRONG, D.L., WILES, K.N., ZHANG, Y. & ZHENG, W. (2017): Characterizing pharmaceutical, personal care product, and hormone contamination in a karst aquifer of southwestern Illinois, USA, using water quality and stream flow parameters.– Sci Total Environ, 578, 281–289. doi: 10.1016/j.scitotenv.2016.10.103
DOUMMAR, J., GEYER, T., BAIERL, M., NÖDLER, K., LICHA, T. & SAUTER, M. (2014): Carbamazepine breakthrough as indicator for specific vulnerability of karst springs: Application on the Jeita spring, Lebanon.– Appl Geochemistry, 47, 150–156. doi: 10.1016/j.apgeochem.2014.06.004
FILIPOVIĆ, M., FRANGEN, T., TERZIĆ, J. & LUKAČ REBERSKI, J. (2023): Hydrogeology of a complex karst catchment in Southern Dalmatia (Croatia) and Western Herzegovina (Bosnia and Herzegovina).– J Maps, 19/1, 2112775. doi: 10.1080/17445647.2022.2112775
FRITZ, F. (1979): Općina Split. Hidrogeološka studija. [Split municipality. Hydrogeological study – in Croatian].– Hrvatski geološki institut. Fond stručne dokumentacije, 191.
GAT, J.R. & CARMI, I. (1970): Evolution of the isotopic composition of atmospheric waters in the Mediterranean Sea area.– J Geophys Res, 75/15, 3039–3048. doi: 10.1029/JC075i015p03039
GEOTEHNIKA (1975): Akumulacija Đale – Pribransko rješenje. Istraživačko projektna dokumentacija. Idejni projekt za brtvljenje akumulacijskog bazena [Đale reservoir – dam design. Research project documentation. Conceptual design for sealing the accumulation basin. – in Croatian].– Fond struč. dok. Elektroprivrede Dalmacije, Split.
GOLDSCHEIDER, N. & DREW, D. (2007): Methods in Karst Hydrogeology.– IAH: International Contributions to Hydrogeology, 26 (1st ed.). CRC Press, 260 p. doi: 10.1201/9781482266023
HAN, D., SONG, X., & CURRELL, M.J. (2016): Identification of anthropogenic and natural inputs of sulfate into a karstic coastal groundwater system in northeast China: evidence from major ions, δ13CDIC and δ34SSO4.– Hydrol Earth Syst Sci, 20/5, 1983–1999. doi: 10.5194/hess-20-1983-2016
HARRELL, JR. F. (2023): Hmisc: Harrell Miscellaneous. R package version 5.1-0, https://CRAN.R-project.org/package=Hmisc
HILLEBRAND, O., NÖDLER, K., GEYER, T., & LICHA, T. (2014): Investigating the dynamics of two herbicides at a karst spring in Germany: Consequences for sustainable raw water management.– Sci Total Environ, 482–483, 193–200. doi: 10.1016/j.scitotenv.2014.02.117
HOLLANDER, M. & WOLFE, D.A. (1973): Nonparametric Statistical Methods.– John Wiley, New York, New York.
HUNJAK, T., LUTZ, H.O. & ROLLER-LUTZ, Z. (2013): Stable isotope composition of the meteoric precipitation in Croatia.– Isotopes Environ Health Stud, 49/3, 336–345. doi: 10.1080/10256016.2013.816697
JEBREEN, H., BANNING, A., WOHNLICH, S., NIEDERMAYR, A., GHANEM, M. & WISOTZKY, F. (2018): The Influence of Karst Aquifer Mineralogy and Geochemistry on Groundwater Characteristics: West Bank, Palestine.– Water, 10/12., doi: 10.3390/w10121829
JUKIĆ, D. & DENIĆ-JUKIĆ, V. (2008): Estimating parameters of groundwater recharge model in frequency domain: Karst springs Jadro and Žrnovnica.– Hydrol Process, 22/23, 4532–4542. doi: 10.1002/hyp.7057
JUKIĆ, D. & DENIĆ-JUKIĆ, V. (2015): Investigating relationships between rainfall and karst-spring discharge by higher-order partial correlation functions.– J Hydrol, 530, 24–36. doi: 10.1016/j.jhydrol.2015.09.045
JUKIĆ, D., DENIĆ-JUKIĆ, V. & KADIĆ, A. (2022): Temporal and spatial characterization of sediment transport through a karst aquifer by means of time series analysis.– J Hydrol, 609. doi: 10.1016/j.jhydrol.2022.127753
KADIĆ, A., DENIĆ-JUKIĆ, V. & JUKIĆ, D. (2017): Revealing hydrological relations of adjacent karst springs by partial correlation analysis.– Hydrol Res, 49/3, 616–633. doi: 10.2166/nh.2017.064
KADIĆ, A., DENIĆ-JUKIĆ, V. & JUKIĆ, D. (2019): Analiza meteoroloških i hidroloških odnosa u kršu primjenom parcijalne kros-korelacijske funkcije višeg reda. [Analysis of meteorological and hydrological relations in the karst using higher-order partial cross-correlation function – in Croatian].– Hrvatske vode, 27/109, 201-210.
KAPELJ, S., KAPELJ, J., BIONDIĆ, R., BIONDIĆ, B., KOVAČ, I., TUŠAR, B., PRELOGOVIĆ, E., MARJANAC, T., ANDRIĆ, M., KOVAČIĆ, D., STRELEC, S. & GAZDEK, M. (2006): Studija upravljanja vodama sliva Jadra i Žrnovnice – Prva faza studijsko istraživačkih radova [Water management study of the Jadro and Žrnovnica springs recharge area – first phase – in Croatian]. EVV:1/2005.– Hrvatske vode, Split.
KAPELJ, S., KAPELJ, J., NOVOSEL, A. & SINGER, D. (2001): Hidrogeološka istraživanja slivnog područja izvora Jadra i Žrnovnice - preliminarni izvještaj, I faza istraživanja [Hydrogeological study of the Jadro and Žrnovnica catchment area – preliminary report, first phase – in Croatian]. Fond str. dok. HGI, br. 42/01, Zagreb.
KAPELJ, S., KAPELJ, J. & ŠVONJA, M. (2012): Hidrogeološka obilježja sliva Jadra i Žrnovnice.– Tusculum, 5/1, 205–216.
KATZ, B.G. & GRIFFIN, D.W. (2008): Using chemical and microbiological indicators to track the impacts from the land application of treated municipal wastewater and other sources on groundwater quality in a karstic springs basin.– Environ Geol, 55/4, 801–821. doi: 10.1007/s00254-007-1033-y
LLAMAS, M.I., JIMÉNEZ-GAVILÁN, P., LUQUE-ESPINAR, J.A., BENAVENTE- HERRERA, J., CANDELA, L., SANMIGUEL- MARTÍ, M., RAMBLA-NEBOT, J., ARANDA-MARES, J.L., & VADILLO-PÉREZ, I. (2022): Hydrogeological, hydrodynamic and anthropogenic factors affecting the spread of pharmaceuticals and pesticides in water resources of the Granada plain (Spain).– J Hydrol, 610, 127791. doi: 10.1016/j.jhydrol.2022.127791
LOBOREC, J., KAPELJ, S. & NOVAK, H. (2015): Analysis of groundwater pollution hazard in karst: a case study of Jadro and Žrnovnica catchment area.– Građevinar, 67/11, 1093–1103. doi: 10.14256/JCE.1250.2015
LUKAČ REBERSKI, J., RUBINIĆ, J., TERZIĆ, J. & RADIŠIĆ, M. (2020): Climate Change Impacts on Groundwater Resources in the Coastal Karstic Adriatic Area: A Case Study from the Dinaric Karst.– Nat Resour Res, 29/3, 1975–1988. doi: 10.1007/s11053-019-09558-6
LUKAČ REBERSKI, J., SELAK, A., LAPWORTH, D. J., MAURICE, L. D., TERZIĆ, J., CIVIL, W. & STROJ, A. (2023): Emerging organic contaminants in springs of the highly karstified Dinaric region.– J Hydrol, 621, 129583. doi: 10.1016/j.jhydrol.2023.129583
MALDINI, K., CUKROV, N., PIKELJ, K., MATIĆ, N. & MLAKAR, M. (2023): Geochemistry of Metals and Organic Matter in Water and Sediments of the Karst River Cetina, Croatia.– Water, 15/7. doi: 10.3390/w15071429
MAAS, B., PETERSON, E.W., HONINGS, J., OBERHELMAN, A., OWARE, P., RUSTHOVEN, I. & WATSON, A. (2019): Differentiation of Surface Water and Groundwater in a Karst System Using Anthropogenic Signatures.– Geosciences, 9/4. doi: 10.3390/geosciences9040148
MATIATOS, I., ALEXOPOULOS, A. & GODELITSAS, A. (2014): Multivariate statistical analysis of the hydrogeochemical and isotopic composition of the groundwater resources in northeastern Peloponnesus (Greece).– Sci Total Environ, 476/477, 577–590. doi: 10.1016/j.scitotenv.2014.01.042
MATIĆ, N., MALDINI, K., CUCULIĆ, V. & FRANČIŠKOVIĆ-BILINSKI, S. (2012): Investigations of karstic springs of the Biokovo Mt from the Dinaric karst of Croatia.– Geochemistry, 72/2, 179–190. doi: 10.1016/j.chemer.2011.08.001
MUDARRA, M., ANDREO, B. & BAKER, A. (2011): Characterisation of dissolved organic matter in karst spring waters using intrinsic fluorescence: Relationship with infiltration processes.– Sci Total Environ, 409/18, 3448–3462. doi: 10.1016/j.scitotenv.2011.05.026
OGLE, D.H., DOLL, J.C., WHEELER, A.P., DINNO, A. (2023): FSA: Simple Fisheries Stock Assessment Methods. R package version 0.9.5, https://CRAN.R-project.org/package=FSA.
OKSANEN, J., SIMPSON, G., BLANCHET, F. G., KINDT, R., LEGENDRE, P., MINCHIN, P., HARA, R., SOLYMOS, P., STEVENS, H., SZÖCS, E., WAGNER, H., BARBOUR, M., BEDWARD, M., BOLKER, B., BORCARD, D., CARVALHO, G., CHIRICO, M., DE CÁCERES, M., DURAND, S. & WEEDON, J. (2022): Vegan community ecology package version 2.6-2 April 2022.
ONDRASEK, G., BAKIĆ BEGIĆ, H., ROMIĆ, D., BRKIĆ, Ž., HUSNJAK, S. & BUBALO KOVAČIĆ, M. (2021): A novel LUMNAqSoP approach for prioritising groundwater monitoring stations for implementation of the Nitrates Directive.– Environ Sci Eur, 33/1, 23. doi: 10.1186/s12302-021-00467-1
PADILLA, I.Y. & VESPER, D.J. (2018): Fate, Transport, and Exposure of Emerging and Legacy Contaminants in Karst Systems: State of Knowledge and Uncertainty BT.– In: WHITE, W.B., HERMAN, J.S., HERMAN, E.K. & RUTIGLIANO, M. (eds.): Karst Groundwater Contamination and Public Health. Springer International Publishing, 33–49.
PARKHURST, D.L. & APPELO, C.A.J. (1999): User’s Guide to PHREEQC (Version 2)—A Computer Program for Speciation, Batch-Reaction, One-Dimensional Transport, and Inverse Geochemical Calculations. – U.S. Geological Survey, Water Resources Investigations Report, 99-4259, Washington DC.
PATEKAR, M., BAŠIĆ, M., POLA, M., KOSOVIĆ, I., TERZIĆ, J., LUCCA, A., MITTEMPERGHER, S., BERIO, L. R. & BOROVIĆ, S. (2022): Multidisciplinary investigations of a karst reservoir for managed aquifer recharge applications on the island of Vis (Croatia).– Acque Sotter – Ital J Groundw, 11/1 37–48. doi: 10.7343/as-2022-557
PERRIN, J. (2003): A conceptual model of flow and transport in a karst aquifer based on spatial and temporal variations of natural tracers. PIPER, M.A. (1944): A graphic procedure in the geochemical interpretation of water-analyses.– Eos, Trans Am Geophys Union, 25/6, 914–928. doi: 10.1029/TR025i006p00914
PLANTAK, L., BIONDIĆ, R., MEAŠKI, H. & TEŽAK, D. (2021): Hydrochemical Indicators Analysis of Seawater Intrusion in Coastal Karstic Aquifers on the Example of the Bokanjac-Poličnik Catchment Area in Zadar, Croatia.– Applied Sciences, 11/24. doi: 10.3390/app112411681
POLJAK, (2014): Određivanje srednjeg vremena zadržavanja podzemne vode u kršu primjenom prirodnih izotopa - primjer sliva Jadro i Žrnovnica. [Determination of mean residence time of groundwater in karst using natural isotopes – example of Jadro and Žrnovnica catchment – in Croatian].– PhD Thesis, University of Zagreb, Faculty of Geotechnical Engineering. Varaždin.
PULIDO-BOSCH, A. (2021): Principles of Karst Hydrogeology.– Springer International Publishing. doi: 10.1007/978-3-030-55370-8
R CORE TEAM (2023): R: A Language and Environment for Statistical Computing.– Foundation for Statistical Computing, Vienna, Austria, https://www.R-project.org
RICHARDS, L.A., GUO, S., LAPWORTH, D.J., WHITE, D., CIVIL, W., WILSON, G.J.L., LU, C., KUMAR, A., GHOSH, A., KHAMIS, K., KRAUSE, S., POLYA, D.A. & GOODDY, D.C. (2023): Emerging organic contaminants in the River Ganga and key tributaries in the middle Gangetic Plain, India: Characterization, distribution & controls. -Environ Pollut, 327, 121626. doi: 10.1016/j.envpol.2023.121626
SCHAIDER, L.A., RUDEL, R.A., ACKERMAN, J.M., DUNAGAN, S.C., & BRODY, J.G. (2014): Pharmaceuticals, perfluorosurfactants, and other organic wastewater compounds in public drinking water wells in a shallow sand and gravel aquifer.– Sci Total Environ, 468–469, 384–393. doi: 10.1016/j.scitotenv.2013.08.067
SCHMIDT, S., GEYER, T., MAREI, A., GUTTMAN, J. & SAUTER, M. (2013): Quantification of long-term wastewater impacts on karst groundwater resources in a semi-arid environment by chloride mass balance methods.– J Hydrol, 502, 177–190. doi: 10.1016/j.jhydrol.2013.08.009
SCHRIKS, M., HERINGA, M.B., VAN DER KOOI, M.M.E., DE VOOGT, P. & VAN WEZEL, A.P. (2010): Toxicological relevance of emerging contaminants for drinking water quality.– Water Res, 44/2, 461–476. doi: 10.1016/j.watres.2009.08.023
SELAK, A., LUKAČ REBERSKI, J., BOLJAT, I. & TERZIĆ, J. (2024): Characterizing occurrence of emerging organic contaminants in Dinaric karst catchment of Jadro and Žrnovnica springs, Croatia.– Emerg Contam, 10/3, 100327. doi: 10.1016/j.emcon.2024.100327
SELAK, A., REBERSKI, J.L., KLOBUČAR, G. & GRČIĆ, I. (2022a): Ecotoxicological aspects related to the occurrence of emerging contaminants in the Dinaric karst aquifer of Jadro and Žrnovnica springs.– Sci Total Environ., 825, 153827. doi: 10.1016/j.scitotenv.2022.153827
SELAK, A., LUKAČ REBERSKI, J., KLOBUČAR, G. & GRČIĆ, I. (2022b): Data on occurrence and ecotoxicological risk of emerging contaminants in Dinaric karst catchment of Jadro and Žrnovnica springs.– Data Br., 42, 108157. doi:10.1016/j.dib.2022.108157
SHEIKHY NARANY, T., BITTNER, D., DISSE, M. & CHIOGNA, G. (2019): Spatial and temporal variability in hydrochemistry of a small-scale dolomite karst environment.– Environ Earth Sci, 78/9, 273. doi: 10.1007/s12665-019-8276-2
SPEARMAN, C. (1904): The Proof and Measurement of Association between Two Things.– Am. J. Psychol. 15, 72–101.
ŠEGOTA, T., & FILIPČIĆ, A. (2003): Köppen’s classification of climates and the problem of corresponding Croatian terminology.– Geoadria, 8/1, 17–37.
TERZIĆ, J., MARKOVIĆ, T. & LUKAČ REBERSKI, J. (2014): Hydrogeological properties of a complex Dinaric karst catchment: Miljacka Spring case study.– Environ Earth Sci, 72/4, 1129–1142. doi: 10.1007/s12665-013-3031-6
TORAN, L. & REISCH, C. E. (2013): Using Stormwater Hysteresis to Characterize Karst Spring Discharge.– Groundwater, 51/4, 575–587. doi: 10.1111/j.1745-6584.2012.00984.x
TORRES-MARTÍNEZ, J. A., MORA, A., KNAPPETT, P. S. K., ORNELASSOTO, N. & MAHLKNECHT, J. (2020): Tracking nitrate and sulfate sources in groundwater of an urbanized valley using a multi-tracer approach combined with a Bayesian isotope mixing model.– Water Res, 182, 115962. doi: 10.1016/j.watres.2020.115962
USGS (2021): PHREEQC v. 3.7.3.15968. Software release 5 December 2021. URL: https://www.usgs.gov/software/phreeqc-version-3
VASIĆ, L., ŽIVOJINOVIĆ, D. & RAJAKOVIĆ-OGNJANOVIĆ, V. (2020): Hydrochemical changes and groundwater grouping data by multivariate statistical methods within one karst system: recharge–discharge zone (Eastern Serbia case study).– Carbonates and Evaporites, 35/1, 15. doi: 10.1007/s13146-019-00548-6
WEI, T. & SIMKO, V. (2021): R package ‘corrplot’: Visualization of a Correlation Matrix. (Version 0.92), https://github.com/taiyun/corrplot
WHITE, W. (1997): Thermodynamic equilibrium, kinetics, activation barriers, and reaction mechanisms for chemical reactions in Karst Terrains.– Environ Geol, 30, 46–58. doi: 10.1007/s002540050131
YURTSEVER, Y. & GAT, J. (1981): Atmospheric waters. Stable Isotope Hydrology: Deuterium and Oxygen-18 in the Water Cycle.– In: GAT, J.R. & GONFIANTINI, R. (eds.): Technical Reports Series 210, IAEA, Vienna, 103–142.
ZEMANN, M., WOLF, L., GRIMMEISEN, F., TIEHM, A., KLINGER, J., HÖTZL, H. & GOLDSCHEIDER, N. (2015): Tracking changing X-ray contrast media application to an urban-influenced karst aquifer in the Wadi Shueib, Jordan.– Environ Pollut, 198, 133–143. doi: 10.1016/j.envpol.2014.11.033
ŽIVANOVIĆ, V., JEMCOV, I. & DRAGIŠIĆ, V. (2022): Vulnerability methods in hard rock formation as a basis for groundwater risk assessment – from resource to source.– Geol Croat, 75, 381–392. doi: 10.4154/gc.2022.23