Seasonality in cave dripwater and air properties – implications for speleothem palaeoclimatology, Nova Grgosova Cave (Croatia)

Main Article Content

Petra Bajo
Maja Briški
Anica Benutić
Aneta Piplica
Vlatko Brčić
Bernardo Marciuš
Iva Palatinuš
Andrej Stroj

Abstract

Due to the wealth of climate-sensitive properties, speleothems have been propelled into prominence as one of  the most powerful continental archives of past climate changes. However, the multitude of processes that  operate in the unsaturated karst zone and in the cave atmosphere can make palaeoclimate interpretations of  the speleothem proxies challenging and site specific. Hence, to better understand the climate-proxy  relationship, cave monitoring studies are usually undertaken. Here, we present the first results of an ongoing  cave monitoring study in the Nova Grgosova Cave in Croatia covering an eighteen-month long monitoring  period. The driving mechanisms for Mg/Ca and Sr/Ca variability in dripwater samples that feed ten stalagmites  are discussed. The results reveal high variability in infiltration among the monitored sites as well as strong  seasonal variability in cave air carbon dioxide (CO2) concentrations. A strong positive correlation between  dripwater Mg/Ca and Sr/Ca suggests that prior calcite precipitation (PCP) is taking place at this site affecting the chemical composition of dripwater. Principal component analysis furthermore reveals that dripwater Mg/Ca and  Sr/Ca are in strong negative correlation with cave air CO2 concentrations, while there is a weak correlation  with dripwater quantity. Cave ventilation is a primary process leading to the PCP at the Nova Grgosova Cave.  The seasonality revealed in this study suggests the possibility that the Mg/Ca and Sr/Ca ratio in the speleothems  from this cave site can be used to aid seasonal reconstructions of past climate conditions in  central Croatia and beyond.

Downloads

Download data is not yet available.

Article Details

Section
Original Scientific Papers

References

BERNAL, J.P., REVOLORIO, F., CU-XI, M., LASES-HERNÁNDEZ, F., PIACSEK, P., LACHNIET, M.S., BEDDOWS, P.A, LUCIA, G., LÓPEZ-AGUIAR, K., CAPELLA-VIZCAINO, S., LÓPEZ-MARTINEZ, R. & VÁSQUEZ, O.J. (2023): Variability of trace-elements and δ18O in drip water from Gruta del Rey Marcos, Guatemala; seasonal and environmental effects, and its implications for paleoclimate reconstructions.– Front. Earth. Sci., 11, 1112957. doi: 10.3389/feart.2023.1112957

BORSATO, A., FRISIA, S., FAIRCHILD, I.J., SOMOGYI, A. & SUSINI, J. (2007): Trace element distribution in annual stalagmite laminae mapped by micrometer-resolution X-ray fluorescence: Implications for incorporation of environmentally significant species.– Geochim. Cosmochim. Ac., 71/6, 1494–1512. doi: 10.1016/J.GCA.2006.12.016

CHENG, H., SPÖTL, C., BREITENBACH, S.F.M., SINHA, A., WASSENBURG, J.A., JOCHUM, K.P., SCHOLZ, D., LI, X., YI, L., PENG, Y., LV, Y., ZHANG, P., VOTINTSEVA, A., LOGINOV, V., NING, Y., KATHAYAT, G. & EDWARDS, R.L. (2016): Climate variations of Central Asia on orbital to millennial timescales.–Sci. Rep., 6, 1–11. doi: 10.1038/srep36975

COLLISTER, C. & MATTEY, D. (2008): Controls on water drop volume at speleothem drip sites: An experimental study.– J. Hydrol., 358/3–4, 259–267. doi: 10.1016/J.JHYDROL.2008.06.008

DAY, C.C. & HENDERSON, G.M. (2013): Controls on trace-element partitioning in cave-analogue calcite.– Geochim. Cosmochim. Ac., 120, 612–627. doi: 10.1016/J.GCA.2013.05.044

DRYSDALE, R.N., HELLSTROM, J.C., ZANCHETTA, G., FALLICK, A.E., SÁNCHEZ GOÑI, M.F., COUCHOUD, I., MCDONALD, J., MAAS, R., LOHMANN, G. & ISOLA, I. (2009): Evidence for obliquity forcing of glacial termination II.– Science, 325/5947, 1527–1531. doi: 10.1126/science.1170371

FAIRCHILD, I.J., BORSATO, A., TOOTH, A.F., FRISIA, S., HAWKESWORTH, C.J., HUANG, Y., MCDERMOTT, F. & SPIRO, B. (2000): Controls on trace element (Sr-Mg) compositions of carbonate cave waters: implications for speleothem climatic records.– Chem. Geol., 166, 255–269. doi: 10.1016/S0009-2541(99)00216-8

FAIRCHILD, I.J. & TREBLE, P.C. (2009): Trace elements in speleothems as recorders of environmental change.– Quaternary Sci. Rev., 28/5–6, 449–468. doi: 10.1016/J.QUASCIREV.2008.11.007

FRISIA, S., FAIRCHILD, I.J., FOHLMEISTER, J., MIORANDI, R., SPÖTL, C. & BORSATO, A. (2011): Carbon mass-balance modelling and carbon isotope exchange processes in dynamic caves.– Geochim. Cosmochim. Ac., 75/2, 380–400. doi: 10.1016/J.GCA.2010.10.021

GABROVŠEK, F. (2023): How do caves breathe: The airflow patterns in karst underground.– PLoS ONE, 18/4, e0283767. doi: 10.1371/journal.pone.0283767

JOHNSON, K.R., HU, C., BELSHAW, N.S. & HENDERSON, G.M. (2006): Seasonal trace-element and stable-isotope variations in a Chinese speleothem: The potential for high-resolution paleomonsoon reconstruction.– Earth Planet. Sc. Lett., 244/1–2, 394–407. doi: 10.1016/J.EPSL.2006.01.064

KUKULJAN, L., GABROVŠEK, F. & COVINGTON, M.D. (2021): The relative importance of wind-driven and chimney effect cave ventilation: Observations in Postojna Cave (Slovenia).– Int. J. Speleol., 50/3, 275–288. doi: 10.5038/1827-806X.50.3.2392

LYU, Y., LUO, W., WANG, Y., ZENG, G., CHEN, J. & WANG, S. (2023): Response of drip water Mg/Ca and Sr/Ca variations in ventilated caves to hydroclimate. Sci.– Total Environ., 874, 162626. doi: 10.1016/j.scitotenv.2023.162626

MAGYAR, I., GEARY, D.H. & MÜLLER, P. (1999): Paleo-geographic evolution of the Late Miocene Lake Pannonian in Central Europe.– Palaeogeogr. Palaeocl. Palaeoeco., 147, 151–167. doi: 10.1016/S0031-0182(98)00155-2

MATTEY, D.P., FAIRCHILD, I.J., ATKINSON, T.C., LATIN, J.P., AINSWORTH, M. & DURELL, R. (2010): Seasonal microclimate control of calcite fabrics, stable isotopes and trace elements in modern speleothem from St Michaels Cave, Gibraltar.– In: PEDLEY, H.M. & ROGERSON, M. (eds.): Tufas and Speleothems: Unravelling the Microbial and Physical Controls. Geological Society, London, Special Publications, 336, 323–344. doi: 10.1144/SP336.17

MCDONALD, J., DRYSDALE, R. & HILL, D. (2004): The 2002–2003 El Niño recorded in Australian cave drip waters: Implications for reconstructing rainfall histories using stalagmites.– Geophys. Res. Lett., 31, 1–4. doi: 10.1029/2004GL020859

MICKLER, P.J., BANNER, J.L., STERN, L., ASMEROM, Y., LAWRENCE EDWARDS, R. & ITO, E. (2004): Stable isotope variations in modern tropical speleothems: Evaluating equilibrium vs. kinetic isotope effects.– Geochim. Cosmochim. Ac., 68/21, 4381–4393. doi: 10.1016/j.gca.2004.02.012

NAVA-FERNANDEZ, C., HARTLAND, A., GÁZQUEZ, F., KWIECIEN, O., MARWAN, N., FOX, B., HELLSTROM, J., PEARSON, A., WARD, B., FRENCH, A., HODELL, D.A., IMMENHAUSER, A. & BREITENBACH, S.F.M. (2020): Pacific climate reflected in Waipuna Cave dripwater hydrochemistry.– Hydrol. Earth Syst. Sc., 24/6, 3361–3380. doi: 10.5194/hess-24-3361-2020

PEEL, M.C., FINLAYSON, B.L. & MCMAHON, T.A. (2007): Updated world map of the Köppen-Geiger climate classification.– Hydrol. Earth Syst. Sc., 11/5, 1633–1644. doi: 10.5194/HESS-11-1633-2007

R CORE TEAM (2024): R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/

VAN RAMPELBERGH, M., VERHEYDEN, S., ALLAN, M., QUINIF, Y., KEPPENS, E. & CLAEYS, P. (2014): Monitoring of a fast-growing speleothem site from the Han-sur-Lesse cave, Belgium, indicates equilibrium deposition of the seasonal δ18O and δ13C signals in the calcite.– Clim. Past, 10/5, 1871–1885. doi: 10.5194/cp-10-1871-2014

RIECHELMANN, D.F.C., RIECHELMANN, S. & SCHRÖDER-RITZRAU, A. (2022): Long-term elemental trends in drip waters from monitoring Bunker Cave: New insights for past precipitation variability.– Chem. Geol., 590, 120704. doi: 10.1016/J.CHEMGEO.2021.120704

SINCLAIR, D.J., BANNER, J.L., TAYLOR, F.W., PARTIN, J., JENSON, J., MYLROIE, J., GODDARD, E., QUINN, T., JOCSON, J. & MIKLAVIČ, B. (2012): Magnesium and strontium systematics in tropical speleothems from the Western Pacific.– Chem. Geol., 294–295, 1–17. doi: 10.1016/j.chemgeo.2011.10.008

SPÖTL, C., FAIRCHILD, I.J. & TOOTH, A.F. (2005): Cave air control on dripwater geochemistry, Obir Caves (Austria): Implications for speleothem deposition in dynamically ventilated caves.– Geochim. Cosmochim. Ac., 69/10, 2451–2468. doi: 10.1016/j.gca.2004.12.009

SURIĆ, M., LONČARIĆ, R., BOČIĆ, N., LONČAR, N. & BUZJAK, N. (2018): Monitoring of selected caves as a prerequisite for the speleothembased reconstruction of the Quaternary environment in Croatia.– Quatern. Int., 494, 263–274. doi: 10.1016/J.QUAINT.2017.06.042

SURIĆ, M., COLUMBU, A., LONČARIĆ, R., BAJO, P., BOČIĆ, N., LONČAR, N., DRYSDALE, R.N. & HELLSTROM, J.C. (2021): Holocene hydroclimate changes in continental Croatia recorded in speleothem δ13C and δ18O from Nova Grgosova Cave.– The Holocene, 31/9, 1401–1416. doi: 10.1177/09596836211019120

ŠIKIĆ, K., BASCH, O. & ŠIMUNIĆ, A. (1978): Osnovna geološka karta SFRJ 1:100000, list Zagreb L33–80 [Basic Geological Map of SFRY 1:100.000, the Zagreb sheet L33–80 – in Croatian].– Institut za geološka istraživanja Zagreb (1972), Savezni geološki zavod, Beograd.

ŠIKIĆ, K., BASCH, O. & ŠIMUNIĆ, A. (1979): Osnovna geološka karta SFRJ 1:100000. Tumač za list Zagreb L33–80 [Basic Geological Map of SFRY 1:100000, Geology of the Zagreb sheet – in Croatian].– Institut za geološka istraživanja Zagreb (1972), Savezni geološki zavod, Beograd, 81 p.

TADROS, C.V., TREBLE, P.C., BAKER, A., FAIRCHILD, I., HANKIN, S., ROACH, R., MARKOWSKA, M. & MCDONALD, J. (2016): ENSOcave drip water hydrochemical relationship: a 7-year dataset from southeastern Australia.– Hydrol. Earth Syst. Sc., 20/11, 4625–4640. doi: 10.5194/HESS-20-4625-2016

TADROS, C.V., TREBLE, P.C., BAKER, A., HANKIN, S. & ROACH, R. (2019): Cave drip water solutes in south-eastern Australia: Constraining sources, sinks and processes.– Sci. Total Environ., 651, 2175–2186. doi: 10.1016/j.scitotenv.2018.10.035

TOMLJENOVIĆ, B. & CSONTOS, L. (2001): Neogene–Quaternary structures in the border zone between the Alps, Dinarides and Pannonian Basin (Hrvatsko Zagorje and Karlovac Basin, Croatia).– Int. J. Earth. Sci., 90, 560–578. doi: 10.1007/s005310000176

TOOTH, A.F. & FAIRCHILD, I.J. (2003): Soil and karst aquifer hydrological controls on the geochemical evolution of speleothem-forming drip waters, Crag Cave, southwest Ireland.– J. Hydrol., 273/1–4, 51–68. doi: 10.1016/S0022-1694(02)00349-9

TREBLE, P.C., SHELLEY, J.M.G. & CHAPPELL, J. (2003): Comparison of high resolution sub-annual records of trace elements in a modern (1911–1992) speleothem with instrumental climate data from southwest Australia.– Earth Planet. Sc. Lett., 216/1–2, 141–153. doi: 10.1016/S0012-821X(03)00504-1

TREBLE, P.C., FAIRCHILD, I.J., GRIFFITHS, A., BAKER, A., MEREDITH, K.T., WOOD, A. & MCGUIRE, E. (2015): Impacts of cave air ventilation and in-cave prior calcite precipitation on Golgotha Cave dripwater chemistry, southwest Australia.– Quaternaty Sci. Rev., 127, 61–72. doi: 10.1016/J.QUASCIREV.2015.06.001

TREBLE, P.C., BAKER, A., ABRAM, N., HELLSTROM, J.C., CRAWFORD, J., GAGAN, M., BORSATO, A., GRIFFITHS, A., BAJO, P., MARKOWSKA, M., PRIESTLEY, S., HANKIN, S. & PATERSON, D. (2022): Ubiquitous karst hydrological control on speleothem oxygen isotope variability in a global study.– Commun. Earth. Environ. 3, 29. doi: 10.1038/s43247-022-00347-3

TREMAINE, D.M. & FROELICH, P.N. (2013): Speleothem trace element signatures: A hydrologic geochemical study of modern cave dripwaters and farmed calcite.– Geochim. Cosmochim. Ac., 121, 522–545. doi: 10.1016/j.gca.2013.07.026

VRSALJKO, D., PAVELIĆ, D. & BAJRAKTAREVIĆ, Z. (2005): Stratigraphy and palaeogeography of Miocene deposits from the marginal area of Žumberak Mt. and the Samoborsko Gorje Mts. (Northwestern Croatia).– Geol. Croat., 58/2, 133–150. doi: 10.4154/GC.2005.07

WARKEN, S.F., FOHLMEISTER, J., SCHRÖDER-RITZRAU, A., CONSTANTIN, S., SPÖTL, C., GERDES, A., ESPER, J., FRANK, N., ARPS, J., TERENTE, M., RIECHELMANN, D.F.C., MANGINI, A. & SCHOLZ, D. (2018): Reconstruction of late Holocene autumn/winter precipitation variability in SW Romania from a high-resolution speleothem trace element record.– Earth Planet. Sc. Lett., 499, 122–133. doi: 10.1016/J.EPSL.2018.07.027

WASSENBURG, J.A., RIECHELMANN, S., SCHRÖDER-RITZRAU, A., RIECHELMANN, D.F.C., RICHTER, D.K., IMMENHAUSER, A., TERENTE, M., CONSTANTIN, S., HACHENBERG, A., HANSEN, M. & SCHOLZ, D. (2020): Calcite Mg and Sr partition coefficients in cave environments: Implications for interpreting prior calcite precipitation in speleothems.– Geochim. Cosmochim. Ac., 269, 581–596. doi: 10.1016/J.GCA.2019.11.011

WONG, C.I., BANNER, J.L. & MUSGROVE, M. (2011): Seasonal dripwater Mg/Ca and Sr/Ca variations driven by cave ventilation: Implications for and modeling of speleothem paleoclimate records.– Geochim. Cosmochim. Ac., 75/12, 3514–3529. doi: 10.1016/j.gca.2011.03.025

WORTHAM, B.E., MONTAÑEZ, I.P., BOWMAN, K., KUTA, D., CONTRERAS, N.S., BRUMMAGE, E., PANG, A., TINSLEY, J. & ROEMER- BAER, G. (2021): Monitoring of Sierra Nevada caves reveals the potential for stalagmites to archive seasonal variability.– Front. Earth Sci., 9, 781526. doi: 10.3389/feart.2021.781526

(2024) Croatian Meteorological and Hydrological Service – CMHS, Meteorological data sets.