Seasonality in cave dripwater and air properties – implications for speleothem palaeoclimatology, Nova Grgosova Cave (Croatia)
Main Article Content
Abstract
Due to the wealth of climate-sensitive properties, speleothems have been propelled into prominence as one of the most powerful continental archives of past climate changes. However, the multitude of processes that operate in the unsaturated karst zone and in the cave atmosphere can make palaeoclimate interpretations of the speleothem proxies challenging and site specific. Hence, to better understand the climate-proxy relationship, cave monitoring studies are usually undertaken. Here, we present the first results of an ongoing cave monitoring study in the Nova Grgosova Cave in Croatia covering an eighteen-month long monitoring period. The driving mechanisms for Mg/Ca and Sr/Ca variability in dripwater samples that feed ten stalagmites are discussed. The results reveal high variability in infiltration among the monitored sites as well as strong seasonal variability in cave air carbon dioxide (CO2) concentrations. A strong positive correlation between dripwater Mg/Ca and Sr/Ca suggests that prior calcite precipitation (PCP) is taking place at this site affecting the chemical composition of dripwater. Principal component analysis furthermore reveals that dripwater Mg/Ca and Sr/Ca are in strong negative correlation with cave air CO2 concentrations, while there is a weak correlation with dripwater quantity. Cave ventilation is a primary process leading to the PCP at the Nova Grgosova Cave. The seasonality revealed in this study suggests the possibility that the Mg/Ca and Sr/Ca ratio in the speleothems from this cave site can be used to aid seasonal reconstructions of past climate conditions in central Croatia and beyond.
Downloads
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors have copyright and publishing rights on all published manuscripts.
References
BORSATO, A., FRISIA, S., FAIRCHILD, I.J., SOMOGYI, A. & SUSINI, J. (2007): Trace element distribution in annual stalagmite laminae mapped by micrometer-resolution X-ray fluorescence: Implications for incorporation of environmentally significant species.– Geochim. Cosmochim. Ac., 71/6, 1494–1512. doi: 10.1016/J.GCA.2006.12.016
CHENG, H., SPÖTL, C., BREITENBACH, S.F.M., SINHA, A., WASSENBURG, J.A., JOCHUM, K.P., SCHOLZ, D., LI, X., YI, L., PENG, Y., LV, Y., ZHANG, P., VOTINTSEVA, A., LOGINOV, V., NING, Y., KATHAYAT, G. & EDWARDS, R.L. (2016): Climate variations of Central Asia on orbital to millennial timescales.–Sci. Rep., 6, 1–11. doi: 10.1038/srep36975
COLLISTER, C. & MATTEY, D. (2008): Controls on water drop volume at speleothem drip sites: An experimental study.– J. Hydrol., 358/3–4, 259–267. doi: 10.1016/J.JHYDROL.2008.06.008
DAY, C.C. & HENDERSON, G.M. (2013): Controls on trace-element partitioning in cave-analogue calcite.– Geochim. Cosmochim. Ac., 120, 612–627. doi: 10.1016/J.GCA.2013.05.044
DRYSDALE, R.N., HELLSTROM, J.C., ZANCHETTA, G., FALLICK, A.E., SÁNCHEZ GOÑI, M.F., COUCHOUD, I., MCDONALD, J., MAAS, R., LOHMANN, G. & ISOLA, I. (2009): Evidence for obliquity forcing of glacial termination II.– Science, 325/5947, 1527–1531. doi: 10.1126/science.1170371
FAIRCHILD, I.J., BORSATO, A., TOOTH, A.F., FRISIA, S., HAWKESWORTH, C.J., HUANG, Y., MCDERMOTT, F. & SPIRO, B. (2000): Controls on trace element (Sr-Mg) compositions of carbonate cave waters: implications for speleothem climatic records.– Chem. Geol., 166, 255–269. doi: 10.1016/S0009-2541(99)00216-8
FAIRCHILD, I.J. & TREBLE, P.C. (2009): Trace elements in speleothems as recorders of environmental change.– Quaternary Sci. Rev., 28/5–6, 449–468. doi: 10.1016/J.QUASCIREV.2008.11.007
FRISIA, S., FAIRCHILD, I.J., FOHLMEISTER, J., MIORANDI, R., SPÖTL, C. & BORSATO, A. (2011): Carbon mass-balance modelling and carbon isotope exchange processes in dynamic caves.– Geochim. Cosmochim. Ac., 75/2, 380–400. doi: 10.1016/J.GCA.2010.10.021
GABROVŠEK, F. (2023): How do caves breathe: The airflow patterns in karst underground.– PLoS ONE, 18/4, e0283767. doi: 10.1371/journal.pone.0283767
JOHNSON, K.R., HU, C., BELSHAW, N.S. & HENDERSON, G.M. (2006): Seasonal trace-element and stable-isotope variations in a Chinese speleothem: The potential for high-resolution paleomonsoon reconstruction.– Earth Planet. Sc. Lett., 244/1–2, 394–407. doi: 10.1016/J.EPSL.2006.01.064
KUKULJAN, L., GABROVŠEK, F. & COVINGTON, M.D. (2021): The relative importance of wind-driven and chimney effect cave ventilation: Observations in Postojna Cave (Slovenia).– Int. J. Speleol., 50/3, 275–288. doi: 10.5038/1827-806X.50.3.2392
LYU, Y., LUO, W., WANG, Y., ZENG, G., CHEN, J. & WANG, S. (2023): Response of drip water Mg/Ca and Sr/Ca variations in ventilated caves to hydroclimate. Sci.– Total Environ., 874, 162626. doi: 10.1016/j.scitotenv.2023.162626
MAGYAR, I., GEARY, D.H. & MÜLLER, P. (1999): Paleo-geographic evolution of the Late Miocene Lake Pannonian in Central Europe.– Palaeogeogr. Palaeocl. Palaeoeco., 147, 151–167. doi: 10.1016/S0031-0182(98)00155-2
MATTEY, D.P., FAIRCHILD, I.J., ATKINSON, T.C., LATIN, J.P., AINSWORTH, M. & DURELL, R. (2010): Seasonal microclimate control of calcite fabrics, stable isotopes and trace elements in modern speleothem from St Michaels Cave, Gibraltar.– In: PEDLEY, H.M. & ROGERSON, M. (eds.): Tufas and Speleothems: Unravelling the Microbial and Physical Controls. Geological Society, London, Special Publications, 336, 323–344. doi: 10.1144/SP336.17
MCDONALD, J., DRYSDALE, R. & HILL, D. (2004): The 2002–2003 El Niño recorded in Australian cave drip waters: Implications for reconstructing rainfall histories using stalagmites.– Geophys. Res. Lett., 31, 1–4. doi: 10.1029/2004GL020859
MICKLER, P.J., BANNER, J.L., STERN, L., ASMEROM, Y., LAWRENCE EDWARDS, R. & ITO, E. (2004): Stable isotope variations in modern tropical speleothems: Evaluating equilibrium vs. kinetic isotope effects.– Geochim. Cosmochim. Ac., 68/21, 4381–4393. doi: 10.1016/j.gca.2004.02.012
NAVA-FERNANDEZ, C., HARTLAND, A., GÁZQUEZ, F., KWIECIEN, O., MARWAN, N., FOX, B., HELLSTROM, J., PEARSON, A., WARD, B., FRENCH, A., HODELL, D.A., IMMENHAUSER, A. & BREITENBACH, S.F.M. (2020): Pacific climate reflected in Waipuna Cave dripwater hydrochemistry.– Hydrol. Earth Syst. Sc., 24/6, 3361–3380. doi: 10.5194/hess-24-3361-2020
PEEL, M.C., FINLAYSON, B.L. & MCMAHON, T.A. (2007): Updated world map of the Köppen-Geiger climate classification.– Hydrol. Earth Syst. Sc., 11/5, 1633–1644. doi: 10.5194/HESS-11-1633-2007
R CORE TEAM (2024): R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/
VAN RAMPELBERGH, M., VERHEYDEN, S., ALLAN, M., QUINIF, Y., KEPPENS, E. & CLAEYS, P. (2014): Monitoring of a fast-growing speleothem site from the Han-sur-Lesse cave, Belgium, indicates equilibrium deposition of the seasonal δ18O and δ13C signals in the calcite.– Clim. Past, 10/5, 1871–1885. doi: 10.5194/cp-10-1871-2014
RIECHELMANN, D.F.C., RIECHELMANN, S. & SCHRÖDER-RITZRAU, A. (2022): Long-term elemental trends in drip waters from monitoring Bunker Cave: New insights for past precipitation variability.– Chem. Geol., 590, 120704. doi: 10.1016/J.CHEMGEO.2021.120704
SINCLAIR, D.J., BANNER, J.L., TAYLOR, F.W., PARTIN, J., JENSON, J., MYLROIE, J., GODDARD, E., QUINN, T., JOCSON, J. & MIKLAVIČ, B. (2012): Magnesium and strontium systematics in tropical speleothems from the Western Pacific.– Chem. Geol., 294–295, 1–17. doi: 10.1016/j.chemgeo.2011.10.008
SPÖTL, C., FAIRCHILD, I.J. & TOOTH, A.F. (2005): Cave air control on dripwater geochemistry, Obir Caves (Austria): Implications for speleothem deposition in dynamically ventilated caves.– Geochim. Cosmochim. Ac., 69/10, 2451–2468. doi: 10.1016/j.gca.2004.12.009
SURIĆ, M., LONČARIĆ, R., BOČIĆ, N., LONČAR, N. & BUZJAK, N. (2018): Monitoring of selected caves as a prerequisite for the speleothembased reconstruction of the Quaternary environment in Croatia.– Quatern. Int., 494, 263–274. doi: 10.1016/J.QUAINT.2017.06.042
SURIĆ, M., COLUMBU, A., LONČARIĆ, R., BAJO, P., BOČIĆ, N., LONČAR, N., DRYSDALE, R.N. & HELLSTROM, J.C. (2021): Holocene hydroclimate changes in continental Croatia recorded in speleothem δ13C and δ18O from Nova Grgosova Cave.– The Holocene, 31/9, 1401–1416. doi: 10.1177/09596836211019120
ŠIKIĆ, K., BASCH, O. & ŠIMUNIĆ, A. (1978): Osnovna geološka karta SFRJ 1:100000, list Zagreb L33–80 [Basic Geological Map of SFRY 1:100.000, the Zagreb sheet L33–80 – in Croatian].– Institut za geološka istraživanja Zagreb (1972), Savezni geološki zavod, Beograd.
ŠIKIĆ, K., BASCH, O. & ŠIMUNIĆ, A. (1979): Osnovna geološka karta SFRJ 1:100000. Tumač za list Zagreb L33–80 [Basic Geological Map of SFRY 1:100000, Geology of the Zagreb sheet – in Croatian].– Institut za geološka istraživanja Zagreb (1972), Savezni geološki zavod, Beograd, 81 p.
TADROS, C.V., TREBLE, P.C., BAKER, A., FAIRCHILD, I., HANKIN, S., ROACH, R., MARKOWSKA, M. & MCDONALD, J. (2016): ENSOcave drip water hydrochemical relationship: a 7-year dataset from southeastern Australia.– Hydrol. Earth Syst. Sc., 20/11, 4625–4640. doi: 10.5194/HESS-20-4625-2016
TADROS, C.V., TREBLE, P.C., BAKER, A., HANKIN, S. & ROACH, R. (2019): Cave drip water solutes in south-eastern Australia: Constraining sources, sinks and processes.– Sci. Total Environ., 651, 2175–2186. doi: 10.1016/j.scitotenv.2018.10.035
TOMLJENOVIĆ, B. & CSONTOS, L. (2001): Neogene–Quaternary structures in the border zone between the Alps, Dinarides and Pannonian Basin (Hrvatsko Zagorje and Karlovac Basin, Croatia).– Int. J. Earth. Sci., 90, 560–578. doi: 10.1007/s005310000176
TOOTH, A.F. & FAIRCHILD, I.J. (2003): Soil and karst aquifer hydrological controls on the geochemical evolution of speleothem-forming drip waters, Crag Cave, southwest Ireland.– J. Hydrol., 273/1–4, 51–68. doi: 10.1016/S0022-1694(02)00349-9
TREBLE, P.C., SHELLEY, J.M.G. & CHAPPELL, J. (2003): Comparison of high resolution sub-annual records of trace elements in a modern (1911–1992) speleothem with instrumental climate data from southwest Australia.– Earth Planet. Sc. Lett., 216/1–2, 141–153. doi: 10.1016/S0012-821X(03)00504-1
TREBLE, P.C., FAIRCHILD, I.J., GRIFFITHS, A., BAKER, A., MEREDITH, K.T., WOOD, A. & MCGUIRE, E. (2015): Impacts of cave air ventilation and in-cave prior calcite precipitation on Golgotha Cave dripwater chemistry, southwest Australia.– Quaternaty Sci. Rev., 127, 61–72. doi: 10.1016/J.QUASCIREV.2015.06.001
TREBLE, P.C., BAKER, A., ABRAM, N., HELLSTROM, J.C., CRAWFORD, J., GAGAN, M., BORSATO, A., GRIFFITHS, A., BAJO, P., MARKOWSKA, M., PRIESTLEY, S., HANKIN, S. & PATERSON, D. (2022): Ubiquitous karst hydrological control on speleothem oxygen isotope variability in a global study.– Commun. Earth. Environ. 3, 29. doi: 10.1038/s43247-022-00347-3
TREMAINE, D.M. & FROELICH, P.N. (2013): Speleothem trace element signatures: A hydrologic geochemical study of modern cave dripwaters and farmed calcite.– Geochim. Cosmochim. Ac., 121, 522–545. doi: 10.1016/j.gca.2013.07.026
VRSALJKO, D., PAVELIĆ, D. & BAJRAKTAREVIĆ, Z. (2005): Stratigraphy and palaeogeography of Miocene deposits from the marginal area of Žumberak Mt. and the Samoborsko Gorje Mts. (Northwestern Croatia).– Geol. Croat., 58/2, 133–150. doi: 10.4154/GC.2005.07
WARKEN, S.F., FOHLMEISTER, J., SCHRÖDER-RITZRAU, A., CONSTANTIN, S., SPÖTL, C., GERDES, A., ESPER, J., FRANK, N., ARPS, J., TERENTE, M., RIECHELMANN, D.F.C., MANGINI, A. & SCHOLZ, D. (2018): Reconstruction of late Holocene autumn/winter precipitation variability in SW Romania from a high-resolution speleothem trace element record.– Earth Planet. Sc. Lett., 499, 122–133. doi: 10.1016/J.EPSL.2018.07.027
WASSENBURG, J.A., RIECHELMANN, S., SCHRÖDER-RITZRAU, A., RIECHELMANN, D.F.C., RICHTER, D.K., IMMENHAUSER, A., TERENTE, M., CONSTANTIN, S., HACHENBERG, A., HANSEN, M. & SCHOLZ, D. (2020): Calcite Mg and Sr partition coefficients in cave environments: Implications for interpreting prior calcite precipitation in speleothems.– Geochim. Cosmochim. Ac., 269, 581–596. doi: 10.1016/J.GCA.2019.11.011
WONG, C.I., BANNER, J.L. & MUSGROVE, M. (2011): Seasonal dripwater Mg/Ca and Sr/Ca variations driven by cave ventilation: Implications for and modeling of speleothem paleoclimate records.– Geochim. Cosmochim. Ac., 75/12, 3514–3529. doi: 10.1016/j.gca.2011.03.025
WORTHAM, B.E., MONTAÑEZ, I.P., BOWMAN, K., KUTA, D., CONTRERAS, N.S., BRUMMAGE, E., PANG, A., TINSLEY, J. & ROEMER- BAER, G. (2021): Monitoring of Sierra Nevada caves reveals the potential for stalagmites to archive seasonal variability.– Front. Earth Sci., 9, 781526. doi: 10.3389/feart.2021.781526
(2024) Croatian Meteorological and Hydrological Service – CMHS, Meteorological data sets.