Hydrogeological parameterisation of the Daruvar thermal aquifer: integration of fracture network analysis and well testing

Main Article Content

Ivan Kosović
Bojan Matoš
Stefano Casiraghi
Gabriele Benedetti
Tihomir Frangen
Kosta Urumović
Ivica Pavičić
Andrea Bistacchi
Silvia Mittempergher
Marco Pola
Staša Borović

Abstract

Highly fractured Mesozoic carbonate rocks are the main reservoir of many geothermal resources in northern  Croatia, being of environmental, cultural, and economic value for the local and regional communities. The  Daruvar thermal springs (temperatures < 50°C) represent the outflow area of an intermediate scale, tectonically  controlled, hydrothermal system hosted in Triassic carbonate rocks. Several investigations have been conducted  in the Daruvar area detailing the architecture of regional and local fracture networks and  quantifying the hydrogeological parameters of the thermal aquifer. In this work, an integrated approach based  on structural and hydrogeological investigations was employed to model the network of fractures in the  reservoir and quantify its impact on the hydraulic properties. Structural investigations were conducted in the  Batinjska Rijeka quarry, considered as an outcrop analogue of the thermal aquifer, employing both a classical  field approach and the virtual quantitative analysis of a 3D digital outcrop model. Structural analysis of the  digital outcrop model allowed identification of two sub-vertical systems of discontinuities, dipping to the NW  and the WSW respectively, in accordance with the data collected through direct field measurements. The main  geometric features of the discontinuity network and their statistical distributions were employed to construct  discrete fracture network models at both the outcrop scale (approximately 100 m) and the aquifer scale in  Daruvar (approximately 700 m). Calibration of the input parameters allowed modelling of porosity and  permeability values that reproduce the field values assessed through pumping tests, well tests, and well logging. This work highlights the importance of integrating geological and hydrogeological investigations to  obtain a more reliable reconstruction and quantification of the processes driving the fluid flow in fractured  aquifers and affecting the spatial distribution of their hydraulic properties. 

Downloads

Download data is not yet available.

Article Details

Section
Original Scientific Papers

References

ALLMENDINGER, R.W., CARDOZO, N. & FISHER, D.M. (2011): Structural geology algorithms: Vectors and tensors.– Cambridge University Press, 289 p. doi: 10.1017/CBO9780511920202

ANGELIER, J. & MECHLER, P. (1977): Sur une methode graphique de recherche des contraintes principales egalement utilisables en tectonique et en seismologie: la methode des diedres droits.– Bulletin de la Société Géologique de France, S7-XIX(6), 1309–1318. doi: 10.2113/gssgfbull.S7-XIX.6.1309

ANTONELLINI, M., CILONA, A., TONDI, E., ZAMBRANO, M. & AGOSTA, F. (2014): Fluid flow numerical experiments of faulted porous carbonates, Northwest Sicily (Italy).– Marine and Petroleum Geology, 55, 186–201. doi: 10.1016/j.marpetgeo.2013.12.003

BADA, G., HORVÁTH, F., DÖVÉNYI, P., SZAFIÁN, P., WINDHOFFER, G. & CLOETINGH, S. (2007): Present-day stress field and tectonic inversion in the Pannonian basin.– Global and Planetary Change, 58/1–4, 165–180. doi: 10.1016/j.gloplacha.2007.01.007

BALEN, D., HORVÁTH, P., TOMLJENOVIĆ, B., FINGER, F., HUMER, B., PAMIĆ, J. & ÁRKAI, P. (2006): A record of pre-Variscan Barrovian regional metamorphism in the eastern part of the Slavonian Mountains (NE Croatia).– Mineralogy and Petrology, 87/1–2, 143–162. doi: 10.1007/s00710-006-0120-1

BENSE, V. F., GLEESON, T., LOVELESS, S. E., BOUR, O. & SCIBEK, J. (2013): Fault zone hydrogeology.– Earth-Science Reviews, 127, 171–192. doi: 10.1016/j.earscirev.2013.09.008

BENEDETTI, G., CASIRAGHI, S., BISTACCHI, A., & BERTACCHI, D. (2024): FracAbility: A python toolbox for survival analysis in fractured rock systems.– In: EGU General Assembly, Vienna, Austria, 14–19 Apr 2024. EGU24-22156. doi: 10.5194/egusphere-egu24-22156, 2024.

BISTACCHI, A., BALSAMO, F., STORTI, F., MOZAFARI, M., SWENNEN, R., SOLUM, J., TUECKMANTEL, C. & TABERNER, C. (2015): Photogrammetric digital outcrop reconstruction, visualization with textured surfaces, and three-dimensional structural analysis and modeling: Innovative methodologies applied to fault-related dolomitization (Vajont Limestone, Southern Alps, Italy).– Geosphere, 11/6, 2031–2048. doi: 10.1130/GES01005.1

BISTACCHI, A., MITTEMPERGHER, S., MARTINELLI, M. & STORTI, F. (2020): On a new robust workflow for the statistical and spatial analysis of fracture data collected with scanlines (or the importance of stationarity).– Solid Earth. doi: 10.5194/se-2020-83

BOROVIĆ, S. (2015): Integrirani hidrogeološko - hidrogeokemijski model Daruvarskog geotermalnog vodonosnika [Integrated hydrogeological-hydrogeochemical model of Daruvar geothermal aquifer – in Croatian].– Unpubl. PhD Thesis, Faculty of Mining, Geology and Petroleum Engineering, University of Zagreb, 228 p.

BOROVIĆ, S. & MARKOVIĆ, I. (2015): Utilization and tourism valorisation of geothermal waters in Croatia.– Renewable and Sustainable Energy Reviews, 44, 52–63. doi: 10.1016/j.rser.2014.12.022

BOROVIĆ, S., POLA, M., BAČANI, A. & URUMOVIĆ, K. (2019): Constraining the recharge area of a hydrothermal system in fractured carbonates by numerical modelling.– Geothermics, 82, 128–149. doi: 10.1016/j.geothermics.2019.05.017

CAINE, J. S., EVANS, J. P. & FORSTER, C. B. (1996): Fault zone architecture and permeability structure.– Geology, 24/11, 1025–1028. doi: 10.1130/0091-7613(1996)024<1025:FZAAPS>2.3.CO

CARDOZO, N. & ALLMENDINGER, R. W. (2013): Spherical projections with OSXStereonet.– Computers and Geosciences, 51, 193–205. doi: 10.1016/j.cageo.2012.07.021.

CARRERA, J. & MARTINEZ-LANDA, L. (2000): Mixed discrete-continuum models: A summary of experiences in test interpretation and model prediction.– In: FAYBISHENKO, B., WITHERSPOON, P.A. & BENSON, S.M. (eds.): Dynamics of Fluid in Fractured Rock, 251–265. doi: 10.1029/GM122p0251

CSONTOS, L. & VÖRÖS, A. (2004): Mesozoic plate tectonic reconstruction of the Carpathian region.– Palaeogeography, Palaeoclimatology, Palaeoecology, 210/1, 1–56. doi: 10.1016/j.palaeo.2004.02.033

CECCATO, A., VIOLA, G., ANTONELLINI, M., TARTAGLIA, G. & RYAN, E.J. (2021): Constraints upon fault zone properties by combined structural analysis of virtual outcrop models and discrete fracture network modelling.– Journal of Structural Geology, 152, 104444. doi: 10.1016/j.jsg.2021.104444

DELVAUX, D. & SPERNER, B. (2003): New aspects of tectonic stress inversion with reference to the TENSOR program.– Geological Society, London, Special Publications, 212/1, 75–100. doi: 10.1144/GSL.SP.2003.212.01.06

DERSHOWITZ, W.S. & HERDA, H.H. (1992): Interpretation of fracture spacing and intensity.– All Days, ARMA-92-0757.

DOBLAS, M. (1998): Slickenside kinematic indicators.– Tectonophysics, 295/1–2, 187–197. doi: 10.1016/S0040-1951(98)00120-6

DE DREUZY, J.‐R., DAVY, P. & BOUR, O. (2002): Hydraulic properties of two‐dimensional random fracture networks following power law distributions of length and aperture.– Water Resources Research, 38/12, 1276. doi: 10.1029/2001WR001009

DE DREUZY, J., DAVY, P. & BOUR, O. (2001): Hydraulic properties of twodimensional random fracture networks following a power law length distribution: 2. Permeability of networks based on lognormal distribution of apertures.– Water Resources Research, 37/8, 2079–2095. doi: 10.1029/2001WR900010

DUFFIELD, G.M. (2007): AQTESOLV for Windows Version 4.5 User's Guide.– HydroSOLVE, Inc., Reston, VA.

FABBRI, P. (1997): Transmissivity in the Geothermal Euganean Basin: A Geostatistical Analysis.– Ground Water, 355, 881–887. doi: 10.1111/j.1745-6584.1997.tb00156.x

FAULKNER, D.R., JACKSON, C.A.L., LUNN, R.J., SCHLISCHE, R.W., SHIPTON, Z.K., WIBBERLEY, C.A.J. & WITHJACK, M.O. (2010): A review of recent developments concerning the structure, mechanics and fluid flow properties of fault zones.– Journal of Structural Geology, 32/11, 1557–1575. doi: 10.1016/j.jsg.2010.06.009

FAYBISHENKO, B., WITHERSPOON, P.A. & BENSON, S.M. (2000): Dynamics of Fluids in Fractured Rock. Geophysical Monograph Series. Vol. 122. – American Geophysical Union, Washington, D. C. doi:10.1029/GM122

FREEZE, R.A. & CHERRY, J.A. (1979): Groundwater.– Englewood Cliffs, NJ: Prentice-Hall, 604 p.

FINSTER, M., CLARK, C., SCHROEDER, J. & MARTINO, L. (2015): Geothermal produced fluids: Characteristics, treatment technologies, and management options.– Renewable and Sustainable Energy Reviews, 50, 952–966. doi: 10.1016/j.rser.2015.05.059

GIUFFRIDA, A., LA BRUNA, V., CASTELLUCCIO, P., PANZA, E., RUSTICHELLI, A., TONDI, E., GIORGIONI, M. & AGOSTA, F. (2019): Fracture simulation parameters of fractured reservoirs: Analogy with outcropping carbonates of the Inner Apulian Platform, southern Italy.– Journal of Structural Geology, 123, 18–41. doi: 10.1016/j.jsg.2019.02.007

GUIHÉNEUF, N., DAUSSE, A., DE DREUZY, J.R. & PARKER, B.L. (2021): Flow-bearing structures of fractured rocks: Insights from hydraulic property scalings revealed by a pumping test.– Journal of Hydrology, 598. doi: 10.1016/j.jhydrol.2020.125715

HANTUSH, M.S. (1961a): Aquifer Tests on Partially Penetrating Wells.– Journal of the Hydraulics Division, 87/5, 171–195. doi: 10.1061/JYCEAJ.0000639

HANTUSH, M. S. (1961b): Drawdown Around a Partially Penetrating Well.– Journal of the Hydraulics Division, 87/4, 83–98. doi: 10.1061/JYCEAJ.0000633

HODGETTS, D. (2013): Laser scanning and digital outcrop geology in the petroleum industry: A review.– Marine and Petroleum Geology, 46, 335–354. doi: 10.1016/j.marpetgeo.2013.02.014

HORVÁTH, F., MUSITZ, B., BALÁZS, A., VÉGH, A., UHRIN, A., NÁDOR, A., KOROKNAI, B., PAP, N., TÓTH, T. & WÓRUM, G. (2015): Evolution of the Pannonian basin and its geothermal resources.– Geothermics, 53, 328–352. doi: 10.1016/j.geothermics.2014.07.009

HORVÁTH, F., BADA, G., SZAFIÁN, P., TARI, G., ÁDÁM, A. & CLOETINGH, S. (2006): Formation and deformation of the Pannonian Basin: Constraints from observational data.– Geological Society Memoir, 32, 191–206. doi: 10.1144/GSL.MEM.2006.032.01.11

HYMAN, J.D., KARRA, S., MAKEDONSKA, N., GABLE, C.W., PAINTER, S.L. & VISWANATHAN, H.S. (2015): dfnWorks: A discrete fracture network framework for modeling subsurface flow and transport.–Computers & Geosciences, 84, 10–19. doi: 10.1016/j.cageo.2015.08.001

JAMIČIĆ, D. (1995): The role of sinistral strike-slip faults in the formation of the structural fabric of the Slavonian Mts. (eastern Croatia).– Geologia Croatica, 48/2, 155–160.

JAMIČIĆ, D., VRAGOVIĆ, M. & MATIČEC, D. (1989): Osnovna geološka karta SFRJ 1:100 000. Tumač za list Daruvar (Basic geological map of SFRJ 1:100 000. Explanatory notes for sheet Daruvar). – Geol. zavod, Zagreb, Sav. geol. zavod Beograd, Beograd, 55 p.

JAROSINSKI, M., BEEKMAN, F., MATENCO, L. & CLOETINGH, S. (2011): Mechanics of basin inversion: Finite element modelling of the Pannonian Basin System.– Tectonophysics, 502/1–2, 121–145. doi: 10.1016/j.tecto.2009.09.015

NG, K. & SANTAMARINA, J. C. (2023): Mechanical and hydraulic properties of carbonate rock: The critical role of porosity.– Journal of Rock Mechanics and Geotechnical Engineering, 15/4, 814–825. doi: 10.1016/j.jrmge.2022.07.017

KEEGAN-TRELOAR, R., IRVINE, D.J., SOLÓRZANO-RIVAS, S.C., WERNER, A.D., BANKS, E.W. & CURRELL, M.J. (2022): Fault-controlled springs: A review.– Earth-Science Reviews, 230, 104058. doi: 10.1016/j.earscirev.2022.104058

KORNEVA, I., CILONA, A., TONDI, E., AGOSTA, F. & GIORGIONI, M. (2015): Characterisation of the permeability anisotropy of Cretaceous platform carbonates by using 3D fracture modeling: the case study of Agri Valley fault zones (southern Italy).– Italian Journal of Geosciences, 134/3, 396–408. doi: 10.3301/IJG.2014.26

KOSOVIĆ, I., BRIŠKI, M., PAVIĆ, M., PADOVAN, B., PAVIČIĆ, I., MATOŠ, B., POLA, M. & BOROVIĆ, S. (2023): Reconstruction of Fault Architecture in the Natural Thermal Spring Area of Daruvar Hydrothermal System Using Surface Geophysical Investigations (Croatia).– Sustainability, 15/16, 12134. doi: 10.3390/su151612134

KOSOVIĆ, I., MATOŠ, B., PAVIČIĆ, I., POLA, M., MILEUSNIĆ, M., PAVIĆ, M. & BOROVIĆ, S. (2024): Geological modeling of a tectonically controlled hydrothermal system in the southwestern part of the Pannonian basin (Croatia).– Frontiers in Earth Science. 12:1401935. doi: 10.3389/feart.2024.1401935

KRUSEMAN, G.P., DE RIDDER, N.A. & VERWEIJ, J.M. (2000): Analysis and evaluation of pumping test data.Vol. 47.– International institute for land reclamation and improvement, Wageningen, 378 p.

LAI, J., SU, Y., XIAO, L., ZHAO, F., BAI, T., LI, Y., LI, H., HUANG, Y., WANG, G. & QIN, Z. (2024): Application of geophysical well logs in solving geologic issues: Past, present and future prospect.– Geoscience Frontiers, 15/3, 101779. doi: 10.1016/j.gsf.2024.101779

LEI, Q., LATHAM, J.-P. & TSANG, C.-F. (2017): The use of discrete fracture networks for modelling coupled geomechanical and hydrological behaviour of fractured rocks.– Computers and Geotechnics, 85, 151–176. doi: 10.1016/j.compgeo.2016.12.024

MAMMOLITI, E., PEPI, A., FRONZI, D., MORELLI, S., VOLATILI, T., TAZIOLI, A. & FRANCIONI, M. (2023): 3D Discrete Fracture Network Modelling from UAV Imagery Coupled with Tracer Tests to Assess Fracture Conductivity in an Unstable Rock Slope: Implications for Rockfall Phenomena.– Remote Sensing, 15/5, 1222. doi: 10.3390/rs15051222

MALVIĆ, T. & CVETKOVIĆ, M. (2013): Lithostratigraphic units in the Drava Depression (Croatian and Hungarian parts) – a correlation.– Nafta, 64/1, 27–33.

MARRETT, R. & ALLMENDINGER, R.W. (1990): Kinematic analysis of fault-slip data.– Journal of Structural Geology, 12/8, 973–986. doi: 10.1016/0191-8141(90)90093-E

MARTINELLI, M., BISTACCHI, A., MITTEMPERGHER, S., BONNEAU, F., BALSAMO, F., CAUMON, G. & MEDA, M. (2020): Damage zone characterization combining scan-line and scan-area analysis on a kmscale Digital Outcrop Model: The Qala Fault (Gozo).– Journal of Structural Geology, 140, 104144. doi: 10.1016/j.jsg.2020.104144

MAULDON, M. (1994): Intersection probabilities of impersistent joints.– International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 31/2, 107–115. doi: 10.1016/0148-9062(94)92800-2

MEDICI, G., LING, F. & SHANG, J. (2023): Review of discrete fracture network characterization for geothermal energy extraction.– Frontiers in Earth Science, 11, 1–17. doi: 10.3389/feart.2023.1328397

MEDICI, G., SMERAGLIA, L., TORABI, A. & BOTTER, C. (2020): Review of Modeling Approaches to Groundwater Flow in Deformed Carbonate Aquifers.– Groundwater, 593, 334–351. doi: 10.1111/gwat.13069

MOENCH, A.F. (1984): Double-porosity models for a fissured groundwater reservoir with fracture skin.– Water Resources Research, 207, 831–846. doi: 10.1029/WR020i007p00831

ODA, M. (1985): Permeability tensor for discontinuous rock masses.– Géotechnique, 35/4, 483–495. doi: 10.1680/geot.1985.35.4.483

ORTNER, H., REITER, F. & ACS, P. (2002): Easy handling of tectonic data: the programs TectonicVB for Mac and TectonicsFP for WindowsTM.– Computers & Geosciences, 28/10, 1193–1200. doi: 10.1016/S0098-3004(02)00038-9

PAMIĆ, J., RADONIĆ, G. & PAVIĆ, G. (2003): Geološki vodič kroz Park prirode Papuk (Geological guide through the Papuk nature park).– Park prirode Papuk, Požega, 66 p.

PAVIĆ, M., KOSOVIĆ, I., POLA, M., URUMOVIĆ, K., BRIŠKI, M. & BOROVIĆ, S. (2023): Multidisciplinary Research of Thermal Springs Area in Topusko (Croatia).– Sustainability, 15/6, 5498. doi: 10.3390/su15065498

POURASKARPARAST, Z., AGHAEI, H., COLOMBERA, L., MASOERO, E. & GHAEDI, M. (2024): Fracture aperture: A review on fundamental concepts, estimation methods, applications, and research gaps.– Marine and Petroleum Geology, 164, 106818. doi: 10.1016/j.marpetgeo.2024.106818

PRELOGOVIĆ, E., SAFTIĆ, B., KUK, V., VELIĆ, J., DRAGAŠ, M. & LUČIĆ, D. (1998): Tectonic activity in the Croatian part of the Pannonian basin.– Tectonophysics, 297/1–4, 283–293. doi: 10.1016/S0040-1951(98)00173-5

PRIEST, S.D. (1993): Discontinuity Analysis for Rock Engineering. Vol. 30. – Springer Netherlands, Dordrecht, 323–324 p. doi:10.1007/978-94-011-1498-1

RENSHAW, C.E. (1995): On the relationship between mechanical and hydraulic apertures in rough‐walled fractures.– Journal of Geophysical Research: Solid Earth, 100/B12, 24629–24636. doi: 10.1029/95JB02159

ROMANO, V., BIGI, S., CARNEVALE, F., DE’HAVEN HYMAN, J., KARRA, S., VALOCCHI, A.J., TARTARELLO, M.C. & BATTAGLIA, M. (2020): Hydraulic characterization of a fault zone from fracture distribution.– Journal of Structural Geology, 135, 104036. doi: 10.1016/j.jsg.2020.104036

RYBACH, L. & MONGILLO, M. (2006): Geothermal Sustainability-A Review with Identified Research Needs.– GRC Transactions, 30, 1083–1090.

SAFTIĆ, B., VELIĆ, J., SZTANO, O., JUHASZ, G. & IVKOVIĆ, Ž. (2003): Tertiary Subsurface Facies, Source Rocks and Hydrocarbon Reservoirs in the SW Part of the Pannonian Basin (Northern Croatia and South-Western Hungary).– Geologia Croatica, 56/1, 101–122. doi: 10.4154/232

SCHMID, S.M., FÜGENSCHUH, B., KOUNOV, A., MAŢENCO, L., NIEVERGELT, P., OBERHÄNSLI, R., PLEUGER, J., SCHEFER, S., SCHUSTER, R., TOMLJENOVIĆ, B., USTASZEWSKI, K. & VAN HINSBERGEN, D.J.J. (2020): Tectonic units of the Alpine collision zone between Eastern Alps and western Turkey.– Gondwana Research, 78, 308–374. doi: 10.1016/j.gr.2019.07.005

SCHMID, S.M., BERNOULLI, D., FÜGENSCHUH, B., MATENCO, L., SCHEFER, S., SCHUSTER, R., TISCHLER, M. & USTASZEWSKI, K. (2008): The Alpine-Carpathian-Dinaridic orogenic system: correlation and evolution of tectonic units.– Swiss Journal of Geosciences, 101/1, 139–183. doi: 10.1007/s00015-008-1247-3

SIEGEL, L., GOLDSCHEIDER, N., PETITTA, M., XANKE, J., ANDREO, B., et al. (2023): Distribution, threats and protection of selected karst groundwater-dependent ecosystems in the Mediterranean region.– Hydrogeology Journal, 31/8, 2231–2249. doi: 10.1007/s10040-023-02711-9

SINGHAL, B.B.S. & GUPTA, R.P. (2010): Applied Hydrogeology of Fractured Rocks. – Springer Netherlands, Dordrecht. doi: 10.1007/978-90-481-8799-7

SMERAGLIA, L., MERCURI, M., TAVANI, S., PIGNALOSA, A., KETTERMANN, M., BILLI, A. & CARMINATI, E. (2021): 3D Discrete Fracture Network (DFN) models of damage zone fluid corridors within a reservoir-scale normal fault in carbonates: Multiscale approach using field data and UAV imagery.– Marine and Petroleum Geology, 126, 104902. doi: 10.1016/j.marpetgeo.2021.104902

SMITH, S.A.F., BISTACCHI, A., MITCHELL, T.M., MITTEMPERGHER, S. & DI TORO, G. (2013). The structure of an exhumed intraplate seismogenic fault in crystalline basement.– Tectonophysics, 599, 29–44. doi: 10.1016/j.tecto.2013.03.031

STEVANOVIĆ, Z. (2019): Karst waters in potable water supply: a global scale overview.– Environmental Earth Sciences, 78/23, 662. doi: 10.1007/s12665-019-8670-9

STORTI, F., BISTACCHI, A., BORSANI, A., BALSAMO, F., FETTER, M., OGATA, K. (2022). Spatial and spacing distribution of joints at (over-) saturation in the turbidite sandstones of the Marnoso-Arenacea Fm. (Northern Apennines, Italy).– Journal of Structural Geology, 156, 104551. doi: 10.1016/j.jsg.2022.104551

SZANYI, J., RYBACH, L. & ABDULHAQ, H.A. (2023): Geothermal Energy and Its Potential for Critical Metal Extraction – A Review.– Energies, 16/20, 1–28. doi: 10.3390/en16207168

ŠIKIĆ, K. (1981): Facijesi mezozoika Papuckog gorja [Facies of the Mesozoic of Mount Papuk – in Croatian]. – Unpubl. PhD Thesis, Faculty of Science, University of Zagreb.

TARI, G., DÖVÉNYI, P., DUNKL, I., HORVÁTH, F., LENKEY, L., STEFANESCU, M., SZAFIÁN, P. & TÓTH, T. (1999): Lithospheric structure of the Pannonian basin derived from seismic, gravity and geothermal data.– Geological Society, London, Special Publications, 156/1, 215–250. doi: 10.1144/GSL.SP.1999.156.01.12

TAVANI, S., STORTI, F., BAUSÀ, J. & MUÑOZ, J. A. (2012): Late thrusting extensional collapse at the mountain front of the northern Apennines (Italy).– Tectonics, 31/4. doi: 10.1029/2011TC003059

THEIS, C.V. (1935): The relation between the lowering of the Piezometric surface and the rate and duration of discharge of a well using groundwater storage.– Eos, Transactions American Geophysical Union, 16/2, 519–524. doi: 10.1029/TR016i002p00519

THIELE, S.T., GROSE, L., SAMSU, A., MICKLETHWAITE, S., VOLLGGER, S.A. & CRUDEN, A.R. (2017): Rapid, semi-automatic fracture and contact mapping for point clouds, images and geophysical data.– Solid Earth, 8/6, 1241–1253. doi: 10.5194/se-8-1241-2017

TOMLJENOVIĆ, B. & CSONTOS, L. (2001): Neogene-quaternary structures in the border zone between Alps, Dinarides and Pannonian Basin (Hrvatsko zgorje and Karlovac basins, Croatia).– International Journal of Earth Sciences, 90/3, 560–578. doi: 10.1007/s005310000176

TURNER, F.J. (1953): Nature and dynamic interpretation of deformation lamellae in calcite of three marbles.– American Journal of Science, 251/4, 276–298. doi: 10.2475/ajs.251.4.276

TZIAVOU, O., PYTHAROULI, S. & SOUTER, J. (2018): Unmanned Aerial Vehicle (UAV) based mapping in engineering geological surveys: Considerations for optimum results.– Eng. Geol., 232, 12–21. doi: 10.1016/j.enggeo.2017.11.004

UNITED NATIONS (2022): The United Nations World Water Development Report 2022: Groundwater: Making the invisible visible. UNESCO, Paris, 225 p.

URUMOVIĆ, K., TERZIĆ, J., KOPIĆ, J. & KOSOVIĆ, I. (2023): Identification of Aquifer and Pumped Well Parameters Using the Data Hidden in Non-Linear Losses.– Sustainability (Switzerland), 15/14, 11170. doi: 10.3390/su151411170

USTASZEWSKI, K., HERAK, M., TOMLJENOVIĆ, B., HERAK, D. & MATEJ, S. (2014): Neotectonics of the Dinarides-Pannonian Basin transition and possible earthquake sources in the Banja Luka epicentral area.– Journal of Geodynamics, 82, 52–68. doi: 10.1016/j.jog.2014.04.006

USTASZEWSKI, K., SCHMID, S. M., FÜGENSCHUH, B., TISCHLER, M., KISSLING, E. & SPAKMAN, W. (2008): A map-view restoration of the Alpine-Carpathian-Dinaridic system for the Early Miocene.– Swiss Journal of Geosciences, 101/SUPPL. 1. doi: 10.1007/s00015-008-1288-7

USTASZEWSKI, K., KOUNOV, A., SCHMID, S. M., SCHALTEGGER, U., KRENN, E., FRANK, W. & FÜGENSCHUH, B. (2010): Evolution of the Adria-Europe plate boundary in the northern Dinarides: From continent-
continent collision to back-arc extension.– Tectonics, 29/6, TC6017. doi: 10.1029/2010TC002668

VERBOVŠEK, T. (2008): Estimation of Transmissivity and Hydraulic Conductivity from Specific Capacity and Specific Capacity Index in Dolomite Aquifers.– Journal of Hydrologic Engineering, 13/9, 817–823. doi: 10.1061/(ASCE)1084-0699(2008)13:9(817)

VOECKLER, H. & ALLEN, D. M. (2012): Estimating regional-scale fractured bedrock hydraulic conductivity using discrete fracture network (DFN) modeling.– Hydrogeology Journal, 20/6, 1081–1100. doi: 10.1007/s10040-012-0858-y

WANG, X. (2005): Stereological interpretation of rock fracture traces on borehole walls and other cylindrical surfaces.– Virginia Techp.

WORTHINGTON, S.R.H., FOLEY, A.E. & SOLEY, R.W.N. (2019): Transient characteristics of effective porosity and specific yield in bedrock aquifers.– Journal of Hydrology, 578, 124129. doi: 10.1016/j.jhydrol.2019.124129

ZAMBRANO, M., TONDI, E., KORNEVA, I., PANZA, E., AGOSTA, F., JANISECK, J.M. & GIORGIONI, M. (2016): Fracture properties analysis and discrete fracture network modelling of faulted tight limestones, Murge Plateau, Italy.– Italian Journal of Geosciences, 135/1, 55–67. doi: 10.3301/IJG.2014.42

ZEEB, C., GOMEZ-RIVAS, E., BONS, P. D. & BLUM, P. (2013): Evaluation of sampling methods for fracture network characterization using outcrops.– AAPG Bulletin, 97/9, 1545–1566. doi: 10.1306/02131312042

ZHANG, L. & EINSTEIN, H. H. (1998): Estimating the Mean Trace Length of Rock Discontinuities.– Rock Mechanics and Rock Engineering, 31/4, 217–235. doi: 10.1007/s006030050022

URL:https://earth.google.com/web/@45.53570123,17.29653113,232.31602905a,6291.71769557d,35y,-12.560923h,2.44982084t,0r/data=OgMKATA (visited April 2024)

URL 2: https://www.pix4d.com/product/pix4dmapper-photogrammetry-software/ (visited April 2024)

URL 3: https://www.cloudcompare.org/ (visited April 2024)

URL 4: https://doi.org/10.5281/zenodo.7890077 (visited April 2024)

URL 5: https://www.mathworks.com/ (visited April 2024)

URL 6: http://qgis.org (visited April 2024)

URL 7: https://doi.org/10.5281/zenodo.11032168 (visited April 2024)

URL 8: https://www.petex.com/products/move-suite/move/ (visited April 2024)