Hydrogeological parameterisation of the Daruvar thermal aquifer: integration of fracture network analysis and well testing
Main Article Content
Abstract
Highly fractured Mesozoic carbonate rocks are the main reservoir of many geothermal resources in northern Croatia, being of environmental, cultural, and economic value for the local and regional communities. The Daruvar thermal springs (temperatures < 50°C) represent the outflow area of an intermediate scale, tectonically controlled, hydrothermal system hosted in Triassic carbonate rocks. Several investigations have been conducted in the Daruvar area detailing the architecture of regional and local fracture networks and quantifying the hydrogeological parameters of the thermal aquifer. In this work, an integrated approach based on structural and hydrogeological investigations was employed to model the network of fractures in the reservoir and quantify its impact on the hydraulic properties. Structural investigations were conducted in the Batinjska Rijeka quarry, considered as an outcrop analogue of the thermal aquifer, employing both a classical field approach and the virtual quantitative analysis of a 3D digital outcrop model. Structural analysis of the digital outcrop model allowed identification of two sub-vertical systems of discontinuities, dipping to the NW and the WSW respectively, in accordance with the data collected through direct field measurements. The main geometric features of the discontinuity network and their statistical distributions were employed to construct discrete fracture network models at both the outcrop scale (approximately 100 m) and the aquifer scale in Daruvar (approximately 700 m). Calibration of the input parameters allowed modelling of porosity and permeability values that reproduce the field values assessed through pumping tests, well tests, and well logging. This work highlights the importance of integrating geological and hydrogeological investigations to obtain a more reliable reconstruction and quantification of the processes driving the fluid flow in fractured aquifers and affecting the spatial distribution of their hydraulic properties.
Downloads
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors have copyright and publishing rights on all published manuscripts.
References
ANGELIER, J. & MECHLER, P. (1977): Sur une methode graphique de recherche des contraintes principales egalement utilisables en tectonique et en seismologie: la methode des diedres droits.– Bulletin de la Société Géologique de France, S7-XIX(6), 1309–1318. doi: 10.2113/gssgfbull.S7-XIX.6.1309
ANTONELLINI, M., CILONA, A., TONDI, E., ZAMBRANO, M. & AGOSTA, F. (2014): Fluid flow numerical experiments of faulted porous carbonates, Northwest Sicily (Italy).– Marine and Petroleum Geology, 55, 186–201. doi: 10.1016/j.marpetgeo.2013.12.003
BADA, G., HORVÁTH, F., DÖVÉNYI, P., SZAFIÁN, P., WINDHOFFER, G. & CLOETINGH, S. (2007): Present-day stress field and tectonic inversion in the Pannonian basin.– Global and Planetary Change, 58/1–4, 165–180. doi: 10.1016/j.gloplacha.2007.01.007
BALEN, D., HORVÁTH, P., TOMLJENOVIĆ, B., FINGER, F., HUMER, B., PAMIĆ, J. & ÁRKAI, P. (2006): A record of pre-Variscan Barrovian regional metamorphism in the eastern part of the Slavonian Mountains (NE Croatia).– Mineralogy and Petrology, 87/1–2, 143–162. doi: 10.1007/s00710-006-0120-1
BENSE, V. F., GLEESON, T., LOVELESS, S. E., BOUR, O. & SCIBEK, J. (2013): Fault zone hydrogeology.– Earth-Science Reviews, 127, 171–192. doi: 10.1016/j.earscirev.2013.09.008
BENEDETTI, G., CASIRAGHI, S., BISTACCHI, A., & BERTACCHI, D. (2024): FracAbility: A python toolbox for survival analysis in fractured rock systems.– In: EGU General Assembly, Vienna, Austria, 14–19 Apr 2024. EGU24-22156. doi: 10.5194/egusphere-egu24-22156, 2024.
BISTACCHI, A., BALSAMO, F., STORTI, F., MOZAFARI, M., SWENNEN, R., SOLUM, J., TUECKMANTEL, C. & TABERNER, C. (2015): Photogrammetric digital outcrop reconstruction, visualization with textured surfaces, and three-dimensional structural analysis and modeling: Innovative methodologies applied to fault-related dolomitization (Vajont Limestone, Southern Alps, Italy).– Geosphere, 11/6, 2031–2048. doi: 10.1130/GES01005.1
BISTACCHI, A., MITTEMPERGHER, S., MARTINELLI, M. & STORTI, F. (2020): On a new robust workflow for the statistical and spatial analysis of fracture data collected with scanlines (or the importance of stationarity).– Solid Earth. doi: 10.5194/se-2020-83
BOROVIĆ, S. (2015): Integrirani hidrogeološko - hidrogeokemijski model Daruvarskog geotermalnog vodonosnika [Integrated hydrogeological-hydrogeochemical model of Daruvar geothermal aquifer – in Croatian].– Unpubl. PhD Thesis, Faculty of Mining, Geology and Petroleum Engineering, University of Zagreb, 228 p.
BOROVIĆ, S. & MARKOVIĆ, I. (2015): Utilization and tourism valorisation of geothermal waters in Croatia.– Renewable and Sustainable Energy Reviews, 44, 52–63. doi: 10.1016/j.rser.2014.12.022
BOROVIĆ, S., POLA, M., BAČANI, A. & URUMOVIĆ, K. (2019): Constraining the recharge area of a hydrothermal system in fractured carbonates by numerical modelling.– Geothermics, 82, 128–149. doi: 10.1016/j.geothermics.2019.05.017
CAINE, J. S., EVANS, J. P. & FORSTER, C. B. (1996): Fault zone architecture and permeability structure.– Geology, 24/11, 1025–1028. doi: 10.1130/0091-7613(1996)024<1025:FZAAPS>2.3.CO
CARDOZO, N. & ALLMENDINGER, R. W. (2013): Spherical projections with OSXStereonet.– Computers and Geosciences, 51, 193–205. doi: 10.1016/j.cageo.2012.07.021.
CARRERA, J. & MARTINEZ-LANDA, L. (2000): Mixed discrete-continuum models: A summary of experiences in test interpretation and model prediction.– In: FAYBISHENKO, B., WITHERSPOON, P.A. & BENSON, S.M. (eds.): Dynamics of Fluid in Fractured Rock, 251–265. doi: 10.1029/GM122p0251
CSONTOS, L. & VÖRÖS, A. (2004): Mesozoic plate tectonic reconstruction of the Carpathian region.– Palaeogeography, Palaeoclimatology, Palaeoecology, 210/1, 1–56. doi: 10.1016/j.palaeo.2004.02.033
CECCATO, A., VIOLA, G., ANTONELLINI, M., TARTAGLIA, G. & RYAN, E.J. (2021): Constraints upon fault zone properties by combined structural analysis of virtual outcrop models and discrete fracture network modelling.– Journal of Structural Geology, 152, 104444. doi: 10.1016/j.jsg.2021.104444
DELVAUX, D. & SPERNER, B. (2003): New aspects of tectonic stress inversion with reference to the TENSOR program.– Geological Society, London, Special Publications, 212/1, 75–100. doi: 10.1144/GSL.SP.2003.212.01.06
DERSHOWITZ, W.S. & HERDA, H.H. (1992): Interpretation of fracture spacing and intensity.– All Days, ARMA-92-0757.
DOBLAS, M. (1998): Slickenside kinematic indicators.– Tectonophysics, 295/1–2, 187–197. doi: 10.1016/S0040-1951(98)00120-6
DE DREUZY, J.‐R., DAVY, P. & BOUR, O. (2002): Hydraulic properties of two‐dimensional random fracture networks following power law distributions of length and aperture.– Water Resources Research, 38/12, 1276. doi: 10.1029/2001WR001009
DE DREUZY, J., DAVY, P. & BOUR, O. (2001): Hydraulic properties of twodimensional random fracture networks following a power law length distribution: 2. Permeability of networks based on lognormal distribution of apertures.– Water Resources Research, 37/8, 2079–2095. doi: 10.1029/2001WR900010
DUFFIELD, G.M. (2007): AQTESOLV for Windows Version 4.5 User's Guide.– HydroSOLVE, Inc., Reston, VA.
FABBRI, P. (1997): Transmissivity in the Geothermal Euganean Basin: A Geostatistical Analysis.– Ground Water, 355, 881–887. doi: 10.1111/j.1745-6584.1997.tb00156.x
FAULKNER, D.R., JACKSON, C.A.L., LUNN, R.J., SCHLISCHE, R.W., SHIPTON, Z.K., WIBBERLEY, C.A.J. & WITHJACK, M.O. (2010): A review of recent developments concerning the structure, mechanics and fluid flow properties of fault zones.– Journal of Structural Geology, 32/11, 1557–1575. doi: 10.1016/j.jsg.2010.06.009
FAYBISHENKO, B., WITHERSPOON, P.A. & BENSON, S.M. (2000): Dynamics of Fluids in Fractured Rock. Geophysical Monograph Series. Vol. 122. – American Geophysical Union, Washington, D. C. doi:10.1029/GM122
FREEZE, R.A. & CHERRY, J.A. (1979): Groundwater.– Englewood Cliffs, NJ: Prentice-Hall, 604 p.
FINSTER, M., CLARK, C., SCHROEDER, J. & MARTINO, L. (2015): Geothermal produced fluids: Characteristics, treatment technologies, and management options.– Renewable and Sustainable Energy Reviews, 50, 952–966. doi: 10.1016/j.rser.2015.05.059
GIUFFRIDA, A., LA BRUNA, V., CASTELLUCCIO, P., PANZA, E., RUSTICHELLI, A., TONDI, E., GIORGIONI, M. & AGOSTA, F. (2019): Fracture simulation parameters of fractured reservoirs: Analogy with outcropping carbonates of the Inner Apulian Platform, southern Italy.– Journal of Structural Geology, 123, 18–41. doi: 10.1016/j.jsg.2019.02.007
GUIHÉNEUF, N., DAUSSE, A., DE DREUZY, J.R. & PARKER, B.L. (2021): Flow-bearing structures of fractured rocks: Insights from hydraulic property scalings revealed by a pumping test.– Journal of Hydrology, 598. doi: 10.1016/j.jhydrol.2020.125715
HANTUSH, M.S. (1961a): Aquifer Tests on Partially Penetrating Wells.– Journal of the Hydraulics Division, 87/5, 171–195. doi: 10.1061/JYCEAJ.0000639
HANTUSH, M. S. (1961b): Drawdown Around a Partially Penetrating Well.– Journal of the Hydraulics Division, 87/4, 83–98. doi: 10.1061/JYCEAJ.0000633
HODGETTS, D. (2013): Laser scanning and digital outcrop geology in the petroleum industry: A review.– Marine and Petroleum Geology, 46, 335–354. doi: 10.1016/j.marpetgeo.2013.02.014
HORVÁTH, F., MUSITZ, B., BALÁZS, A., VÉGH, A., UHRIN, A., NÁDOR, A., KOROKNAI, B., PAP, N., TÓTH, T. & WÓRUM, G. (2015): Evolution of the Pannonian basin and its geothermal resources.– Geothermics, 53, 328–352. doi: 10.1016/j.geothermics.2014.07.009
HORVÁTH, F., BADA, G., SZAFIÁN, P., TARI, G., ÁDÁM, A. & CLOETINGH, S. (2006): Formation and deformation of the Pannonian Basin: Constraints from observational data.– Geological Society Memoir, 32, 191–206. doi: 10.1144/GSL.MEM.2006.032.01.11
HYMAN, J.D., KARRA, S., MAKEDONSKA, N., GABLE, C.W., PAINTER, S.L. & VISWANATHAN, H.S. (2015): dfnWorks: A discrete fracture network framework for modeling subsurface flow and transport.–Computers & Geosciences, 84, 10–19. doi: 10.1016/j.cageo.2015.08.001
JAMIČIĆ, D. (1995): The role of sinistral strike-slip faults in the formation of the structural fabric of the Slavonian Mts. (eastern Croatia).– Geologia Croatica, 48/2, 155–160.
JAMIČIĆ, D., VRAGOVIĆ, M. & MATIČEC, D. (1989): Osnovna geološka karta SFRJ 1:100 000. Tumač za list Daruvar (Basic geological map of SFRJ 1:100 000. Explanatory notes for sheet Daruvar). – Geol. zavod, Zagreb, Sav. geol. zavod Beograd, Beograd, 55 p.
JAROSINSKI, M., BEEKMAN, F., MATENCO, L. & CLOETINGH, S. (2011): Mechanics of basin inversion: Finite element modelling of the Pannonian Basin System.– Tectonophysics, 502/1–2, 121–145. doi: 10.1016/j.tecto.2009.09.015
NG, K. & SANTAMARINA, J. C. (2023): Mechanical and hydraulic properties of carbonate rock: The critical role of porosity.– Journal of Rock Mechanics and Geotechnical Engineering, 15/4, 814–825. doi: 10.1016/j.jrmge.2022.07.017
KEEGAN-TRELOAR, R., IRVINE, D.J., SOLÓRZANO-RIVAS, S.C., WERNER, A.D., BANKS, E.W. & CURRELL, M.J. (2022): Fault-controlled springs: A review.– Earth-Science Reviews, 230, 104058. doi: 10.1016/j.earscirev.2022.104058
KORNEVA, I., CILONA, A., TONDI, E., AGOSTA, F. & GIORGIONI, M. (2015): Characterisation of the permeability anisotropy of Cretaceous platform carbonates by using 3D fracture modeling: the case study of Agri Valley fault zones (southern Italy).– Italian Journal of Geosciences, 134/3, 396–408. doi: 10.3301/IJG.2014.26
KOSOVIĆ, I., BRIŠKI, M., PAVIĆ, M., PADOVAN, B., PAVIČIĆ, I., MATOŠ, B., POLA, M. & BOROVIĆ, S. (2023): Reconstruction of Fault Architecture in the Natural Thermal Spring Area of Daruvar Hydrothermal System Using Surface Geophysical Investigations (Croatia).– Sustainability, 15/16, 12134. doi: 10.3390/su151612134
KOSOVIĆ, I., MATOŠ, B., PAVIČIĆ, I., POLA, M., MILEUSNIĆ, M., PAVIĆ, M. & BOROVIĆ, S. (2024): Geological modeling of a tectonically controlled hydrothermal system in the southwestern part of the Pannonian basin (Croatia).– Frontiers in Earth Science. 12:1401935. doi: 10.3389/feart.2024.1401935
KRUSEMAN, G.P., DE RIDDER, N.A. & VERWEIJ, J.M. (2000): Analysis and evaluation of pumping test data.Vol. 47.– International institute for land reclamation and improvement, Wageningen, 378 p.
LAI, J., SU, Y., XIAO, L., ZHAO, F., BAI, T., LI, Y., LI, H., HUANG, Y., WANG, G. & QIN, Z. (2024): Application of geophysical well logs in solving geologic issues: Past, present and future prospect.– Geoscience Frontiers, 15/3, 101779. doi: 10.1016/j.gsf.2024.101779
LEI, Q., LATHAM, J.-P. & TSANG, C.-F. (2017): The use of discrete fracture networks for modelling coupled geomechanical and hydrological behaviour of fractured rocks.– Computers and Geotechnics, 85, 151–176. doi: 10.1016/j.compgeo.2016.12.024
MAMMOLITI, E., PEPI, A., FRONZI, D., MORELLI, S., VOLATILI, T., TAZIOLI, A. & FRANCIONI, M. (2023): 3D Discrete Fracture Network Modelling from UAV Imagery Coupled with Tracer Tests to Assess Fracture Conductivity in an Unstable Rock Slope: Implications for Rockfall Phenomena.– Remote Sensing, 15/5, 1222. doi: 10.3390/rs15051222
MALVIĆ, T. & CVETKOVIĆ, M. (2013): Lithostratigraphic units in the Drava Depression (Croatian and Hungarian parts) – a correlation.– Nafta, 64/1, 27–33.
MARRETT, R. & ALLMENDINGER, R.W. (1990): Kinematic analysis of fault-slip data.– Journal of Structural Geology, 12/8, 973–986. doi: 10.1016/0191-8141(90)90093-E
MARTINELLI, M., BISTACCHI, A., MITTEMPERGHER, S., BONNEAU, F., BALSAMO, F., CAUMON, G. & MEDA, M. (2020): Damage zone characterization combining scan-line and scan-area analysis on a kmscale Digital Outcrop Model: The Qala Fault (Gozo).– Journal of Structural Geology, 140, 104144. doi: 10.1016/j.jsg.2020.104144
MAULDON, M. (1994): Intersection probabilities of impersistent joints.– International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 31/2, 107–115. doi: 10.1016/0148-9062(94)92800-2
MEDICI, G., LING, F. & SHANG, J. (2023): Review of discrete fracture network characterization for geothermal energy extraction.– Frontiers in Earth Science, 11, 1–17. doi: 10.3389/feart.2023.1328397
MEDICI, G., SMERAGLIA, L., TORABI, A. & BOTTER, C. (2020): Review of Modeling Approaches to Groundwater Flow in Deformed Carbonate Aquifers.– Groundwater, 593, 334–351. doi: 10.1111/gwat.13069
MOENCH, A.F. (1984): Double-porosity models for a fissured groundwater reservoir with fracture skin.– Water Resources Research, 207, 831–846. doi: 10.1029/WR020i007p00831
ODA, M. (1985): Permeability tensor for discontinuous rock masses.– Géotechnique, 35/4, 483–495. doi: 10.1680/geot.1985.35.4.483
ORTNER, H., REITER, F. & ACS, P. (2002): Easy handling of tectonic data: the programs TectonicVB for Mac and TectonicsFP for WindowsTM.– Computers & Geosciences, 28/10, 1193–1200. doi: 10.1016/S0098-3004(02)00038-9
PAMIĆ, J., RADONIĆ, G. & PAVIĆ, G. (2003): Geološki vodič kroz Park prirode Papuk (Geological guide through the Papuk nature park).– Park prirode Papuk, Požega, 66 p.
PAVIĆ, M., KOSOVIĆ, I., POLA, M., URUMOVIĆ, K., BRIŠKI, M. & BOROVIĆ, S. (2023): Multidisciplinary Research of Thermal Springs Area in Topusko (Croatia).– Sustainability, 15/6, 5498. doi: 10.3390/su15065498
POURASKARPARAST, Z., AGHAEI, H., COLOMBERA, L., MASOERO, E. & GHAEDI, M. (2024): Fracture aperture: A review on fundamental concepts, estimation methods, applications, and research gaps.– Marine and Petroleum Geology, 164, 106818. doi: 10.1016/j.marpetgeo.2024.106818
PRELOGOVIĆ, E., SAFTIĆ, B., KUK, V., VELIĆ, J., DRAGAŠ, M. & LUČIĆ, D. (1998): Tectonic activity in the Croatian part of the Pannonian basin.– Tectonophysics, 297/1–4, 283–293. doi: 10.1016/S0040-1951(98)00173-5
PRIEST, S.D. (1993): Discontinuity Analysis for Rock Engineering. Vol. 30. – Springer Netherlands, Dordrecht, 323–324 p. doi:10.1007/978-94-011-1498-1
RENSHAW, C.E. (1995): On the relationship between mechanical and hydraulic apertures in rough‐walled fractures.– Journal of Geophysical Research: Solid Earth, 100/B12, 24629–24636. doi: 10.1029/95JB02159
ROMANO, V., BIGI, S., CARNEVALE, F., DE’HAVEN HYMAN, J., KARRA, S., VALOCCHI, A.J., TARTARELLO, M.C. & BATTAGLIA, M. (2020): Hydraulic characterization of a fault zone from fracture distribution.– Journal of Structural Geology, 135, 104036. doi: 10.1016/j.jsg.2020.104036
RYBACH, L. & MONGILLO, M. (2006): Geothermal Sustainability-A Review with Identified Research Needs.– GRC Transactions, 30, 1083–1090.
SAFTIĆ, B., VELIĆ, J., SZTANO, O., JUHASZ, G. & IVKOVIĆ, Ž. (2003): Tertiary Subsurface Facies, Source Rocks and Hydrocarbon Reservoirs in the SW Part of the Pannonian Basin (Northern Croatia and South-Western Hungary).– Geologia Croatica, 56/1, 101–122. doi: 10.4154/232
SCHMID, S.M., FÜGENSCHUH, B., KOUNOV, A., MAŢENCO, L., NIEVERGELT, P., OBERHÄNSLI, R., PLEUGER, J., SCHEFER, S., SCHUSTER, R., TOMLJENOVIĆ, B., USTASZEWSKI, K. & VAN HINSBERGEN, D.J.J. (2020): Tectonic units of the Alpine collision zone between Eastern Alps and western Turkey.– Gondwana Research, 78, 308–374. doi: 10.1016/j.gr.2019.07.005
SCHMID, S.M., BERNOULLI, D., FÜGENSCHUH, B., MATENCO, L., SCHEFER, S., SCHUSTER, R., TISCHLER, M. & USTASZEWSKI, K. (2008): The Alpine-Carpathian-Dinaridic orogenic system: correlation and evolution of tectonic units.– Swiss Journal of Geosciences, 101/1, 139–183. doi: 10.1007/s00015-008-1247-3
SIEGEL, L., GOLDSCHEIDER, N., PETITTA, M., XANKE, J., ANDREO, B., et al. (2023): Distribution, threats and protection of selected karst groundwater-dependent ecosystems in the Mediterranean region.– Hydrogeology Journal, 31/8, 2231–2249. doi: 10.1007/s10040-023-02711-9
SINGHAL, B.B.S. & GUPTA, R.P. (2010): Applied Hydrogeology of Fractured Rocks. – Springer Netherlands, Dordrecht. doi: 10.1007/978-90-481-8799-7
SMERAGLIA, L., MERCURI, M., TAVANI, S., PIGNALOSA, A., KETTERMANN, M., BILLI, A. & CARMINATI, E. (2021): 3D Discrete Fracture Network (DFN) models of damage zone fluid corridors within a reservoir-scale normal fault in carbonates: Multiscale approach using field data and UAV imagery.– Marine and Petroleum Geology, 126, 104902. doi: 10.1016/j.marpetgeo.2021.104902
SMITH, S.A.F., BISTACCHI, A., MITCHELL, T.M., MITTEMPERGHER, S. & DI TORO, G. (2013). The structure of an exhumed intraplate seismogenic fault in crystalline basement.– Tectonophysics, 599, 29–44. doi: 10.1016/j.tecto.2013.03.031
STEVANOVIĆ, Z. (2019): Karst waters in potable water supply: a global scale overview.– Environmental Earth Sciences, 78/23, 662. doi: 10.1007/s12665-019-8670-9
STORTI, F., BISTACCHI, A., BORSANI, A., BALSAMO, F., FETTER, M., OGATA, K. (2022). Spatial and spacing distribution of joints at (over-) saturation in the turbidite sandstones of the Marnoso-Arenacea Fm. (Northern Apennines, Italy).– Journal of Structural Geology, 156, 104551. doi: 10.1016/j.jsg.2022.104551
SZANYI, J., RYBACH, L. & ABDULHAQ, H.A. (2023): Geothermal Energy and Its Potential for Critical Metal Extraction – A Review.– Energies, 16/20, 1–28. doi: 10.3390/en16207168
ŠIKIĆ, K. (1981): Facijesi mezozoika Papuckog gorja [Facies of the Mesozoic of Mount Papuk – in Croatian]. – Unpubl. PhD Thesis, Faculty of Science, University of Zagreb.
TARI, G., DÖVÉNYI, P., DUNKL, I., HORVÁTH, F., LENKEY, L., STEFANESCU, M., SZAFIÁN, P. & TÓTH, T. (1999): Lithospheric structure of the Pannonian basin derived from seismic, gravity and geothermal data.– Geological Society, London, Special Publications, 156/1, 215–250. doi: 10.1144/GSL.SP.1999.156.01.12
TAVANI, S., STORTI, F., BAUSÀ, J. & MUÑOZ, J. A. (2012): Late thrusting extensional collapse at the mountain front of the northern Apennines (Italy).– Tectonics, 31/4. doi: 10.1029/2011TC003059
THEIS, C.V. (1935): The relation between the lowering of the Piezometric surface and the rate and duration of discharge of a well using groundwater storage.– Eos, Transactions American Geophysical Union, 16/2, 519–524. doi: 10.1029/TR016i002p00519
THIELE, S.T., GROSE, L., SAMSU, A., MICKLETHWAITE, S., VOLLGGER, S.A. & CRUDEN, A.R. (2017): Rapid, semi-automatic fracture and contact mapping for point clouds, images and geophysical data.– Solid Earth, 8/6, 1241–1253. doi: 10.5194/se-8-1241-2017
TOMLJENOVIĆ, B. & CSONTOS, L. (2001): Neogene-quaternary structures in the border zone between Alps, Dinarides and Pannonian Basin (Hrvatsko zgorje and Karlovac basins, Croatia).– International Journal of Earth Sciences, 90/3, 560–578. doi: 10.1007/s005310000176
TURNER, F.J. (1953): Nature and dynamic interpretation of deformation lamellae in calcite of three marbles.– American Journal of Science, 251/4, 276–298. doi: 10.2475/ajs.251.4.276
TZIAVOU, O., PYTHAROULI, S. & SOUTER, J. (2018): Unmanned Aerial Vehicle (UAV) based mapping in engineering geological surveys: Considerations for optimum results.– Eng. Geol., 232, 12–21. doi: 10.1016/j.enggeo.2017.11.004
UNITED NATIONS (2022): The United Nations World Water Development Report 2022: Groundwater: Making the invisible visible. UNESCO, Paris, 225 p.
URUMOVIĆ, K., TERZIĆ, J., KOPIĆ, J. & KOSOVIĆ, I. (2023): Identification of Aquifer and Pumped Well Parameters Using the Data Hidden in Non-Linear Losses.– Sustainability (Switzerland), 15/14, 11170. doi: 10.3390/su151411170
USTASZEWSKI, K., HERAK, M., TOMLJENOVIĆ, B., HERAK, D. & MATEJ, S. (2014): Neotectonics of the Dinarides-Pannonian Basin transition and possible earthquake sources in the Banja Luka epicentral area.– Journal of Geodynamics, 82, 52–68. doi: 10.1016/j.jog.2014.04.006
USTASZEWSKI, K., SCHMID, S. M., FÜGENSCHUH, B., TISCHLER, M., KISSLING, E. & SPAKMAN, W. (2008): A map-view restoration of the Alpine-Carpathian-Dinaridic system for the Early Miocene.– Swiss Journal of Geosciences, 101/SUPPL. 1. doi: 10.1007/s00015-008-1288-7
USTASZEWSKI, K., KOUNOV, A., SCHMID, S. M., SCHALTEGGER, U., KRENN, E., FRANK, W. & FÜGENSCHUH, B. (2010): Evolution of the Adria-Europe plate boundary in the northern Dinarides: From continent-
continent collision to back-arc extension.– Tectonics, 29/6, TC6017. doi: 10.1029/2010TC002668
VERBOVŠEK, T. (2008): Estimation of Transmissivity and Hydraulic Conductivity from Specific Capacity and Specific Capacity Index in Dolomite Aquifers.– Journal of Hydrologic Engineering, 13/9, 817–823. doi: 10.1061/(ASCE)1084-0699(2008)13:9(817)
VOECKLER, H. & ALLEN, D. M. (2012): Estimating regional-scale fractured bedrock hydraulic conductivity using discrete fracture network (DFN) modeling.– Hydrogeology Journal, 20/6, 1081–1100. doi: 10.1007/s10040-012-0858-y
WANG, X. (2005): Stereological interpretation of rock fracture traces on borehole walls and other cylindrical surfaces.– Virginia Techp.
WORTHINGTON, S.R.H., FOLEY, A.E. & SOLEY, R.W.N. (2019): Transient characteristics of effective porosity and specific yield in bedrock aquifers.– Journal of Hydrology, 578, 124129. doi: 10.1016/j.jhydrol.2019.124129
ZAMBRANO, M., TONDI, E., KORNEVA, I., PANZA, E., AGOSTA, F., JANISECK, J.M. & GIORGIONI, M. (2016): Fracture properties analysis and discrete fracture network modelling of faulted tight limestones, Murge Plateau, Italy.– Italian Journal of Geosciences, 135/1, 55–67. doi: 10.3301/IJG.2014.42
ZEEB, C., GOMEZ-RIVAS, E., BONS, P. D. & BLUM, P. (2013): Evaluation of sampling methods for fracture network characterization using outcrops.– AAPG Bulletin, 97/9, 1545–1566. doi: 10.1306/02131312042
ZHANG, L. & EINSTEIN, H. H. (1998): Estimating the Mean Trace Length of Rock Discontinuities.– Rock Mechanics and Rock Engineering, 31/4, 217–235. doi: 10.1007/s006030050022
URL:https://earth.google.com/web/@45.53570123,17.29653113,232.31602905a,6291.71769557d,35y,-12.560923h,2.44982084t,0r/data=OgMKATA (visited April 2024)
URL 2: https://www.pix4d.com/product/pix4dmapper-photogrammetry-software/ (visited April 2024)
URL 3: https://www.cloudcompare.org/ (visited April 2024)
URL 4: https://doi.org/10.5281/zenodo.7890077 (visited April 2024)
URL 5: https://www.mathworks.com/ (visited April 2024)
URL 6: http://qgis.org (visited April 2024)
URL 7: https://doi.org/10.5281/zenodo.11032168 (visited April 2024)
URL 8: https://www.petex.com/products/move-suite/move/ (visited April 2024)