A conceptual and numerical model of fluid flow and heat transport in the Topusko hydrothermal system

Main Article Content

Mirja Pavić
Marco Pola
Bojan Matoš
Katarina Mišić
Ivan Kosović
Ivica Pavičić
Staša Borović

Abstract

Comprehensive understanding of hydrothermal systems is often obtained through the integration of conceptual and numerical modelling. This integrated approach provides a structured framework for the reconstruction and quantification of fluid dynamics in the reservoir, thereby facilitating informed decision-making for sustainable utilisation and environmental protection of the hydrothermal system. In this study, an updated conceptual model of the Topusko hydrothermal system (THS; central Croatia) is proposed based on structural, geochemical, and hydrogeological analyses. The stratigraphic sequence and the structural framework of the THS were defined based on geological maps and field investigations. As depicted by hydrochemical and isotope analyses, thermal waters in Topusko (temperatures of up to 65 °C) are of meteoric origin and circulate in a carbonate aquifer. The THS receives diffuse recharge approximately 13 km S from Topusko, where Triassic carbonates crop out. Gravity-driven regional groundwater circulation is favoured by regional thrusts that tectonically uplifted Palaeozoic low permeable rocks. These structures confine the fluid flow in the permeable, fractured and karstified, Triassic carbonates favouring the northward circulation of the water. A regional anticline lifts the aquifer closer to the surface in Topusko. Open fractures in the anticline hinge zone increase the fracturing and permeability field of the aquifer promoting the quick upwelling of the thermal water resulting in the Topusko thermal springs. Numerical simulations of fluid flow and heat transport corroborate the proposed conceptual model. In particular, a thermal anomaly was modelled in the Topusko subsurface with temperature values of 31.3 °C and 59.5 °C at the surface and at the base of the thermal aquifer, respectively, approaching the field observations. These findings showed that the circulation of Topusko thermal water is influenced by regional and local geological structures suggesting that the enhanced permeability field in the discharge area enables the formation of the natural thermal springs.

Downloads

Download data is not yet available.

Article Details

Section
Original Scientific Papers

References

ANDERSON, M.P. (2005): Heat as a Ground Water Tracer.– Groundwater, 43/6, 951–968. doi: 10.1111/j.1745-6584.2005.00052.x

ANDERSON, M., WOESSNER, W. & HUNT, R. (2015): Applied Ground Water Modeling: Simulation of Flow and Advective Transport.– Elsevier, London, 533 p.

AN, R., JIANG, X.-W., WANG, J.-Z., WAN, L., WANG, X.-S. & LI, H. (2015): A theoretical analysis of basin-scale groundwater temperature distribution.– Hydrogeol. J., 23/2, 397–404. doi: 10.1007/s10040-014-1197-y

BAĆ, J. & HERAK, M. (1962): Prijedlog određivanja užih i širih zaštitnih zona termomineralnih izvora u Hrvatskoj [Recommendation for determination of wider and narrow protection zones for thermo-mineral springs in Croatia – in Croatian].– Unpublished report, Institute for geological research, Zagreb, 147 p.

BAHUN, S. & RALJEVIĆ, B. (1969): Mineralna, termalna i ljekovita vrela [Mineral and Thermal Springs – in Croatian].– Unpublished report, Institute for geological research, Zagreb.

BÉKÉSI, E., LENKEY, L., LIMBERGER, J., PORKOLÁB, K., BALÁZS, A., BONTÉ, D., VRIJLANDT, M., HORVÁTH, F., CLOETINGH, S. & VAN WEES, J.D. (2018): Subsurface temperature model of the Hungarian part of the Pannonian Basin.– Global and Planetary Change, 171, 48–64. doi: 10.1016/j.gloplacha.2017.09.020

BENČEK, Đ., BUKOVAC, J., MAGAŠ, N. & ŠIMUNIĆ, A. (2014): Osnovna geološka karta Republike Hrvatske 1:100.000, List Karlovac L33-92 [Basic Geological Map of the Republic of Croatia 1:100.000, Karlovac sheet – in Croatian].– Croatian Geological Survey, Zagreb.

BENČEK, Đ., BUKOVAC, J., MAGAŠ, N. & ŠIMUNIĆ, A. (2014): Osnovna geološka karta Republike Hrvatske 1:100.000, Tumač za list Karlovac L33-92 [Basic Geological Map of the Republic of Croatia 1:100.000, Explanatory notes for Karlovac sheet – in Croatian].– Croatian Geological Survey, Zagreb, 85 p.

BOROVIĆ, S., MARKOVIĆ, T., LARVA, O., BRKIĆ, Ž. & MRAZ, V. (2016): Mineral and Thermal Waters in the Croatian Part of the Pannonian Basin.– In: PAPIĆ, P. (ed.): Mineral and Thermal Waters of Southeastern Europe. Springer, Cham.

BOROVIĆ, S., URUMOVIĆ, K., TERZIĆ, J. & PAVIČIĆ, I. (2018): Examining thermal conductivities of shallow subsurface materials for ground source heat pump utilization in the Pannonian part of Croatia.– The Mining-Geological-Petroleum Engineering Bulletin, 33/5, 27–35. doi: 10.17794/rgn.2018.5.3

BOROVIĆ, S., POLA, M., BAČANI, A. & URUMOVIĆ, K. (2019): Constraining the recharge area of a hydrothermal system in fractured carbonates by numerical modelling.– Geothermics, 82, 128–149. doi: 10.1016/j.geothermics.2019.05.017

BRÜCKL, E., BEHM, M., DECKER, K., GRAD, M., GUTERCH, A., KELLER, G.R. & THYBO, H. (2010): Crustal structure and active tectonics in the Eastern Alps.– Tectonics, 29/2. doi: 10.1029/2009TC002491
BUNDSCHUH, J. & CÉSAR SUÁREZ, A.M. (2010): Introduction to the Numerical Modeling of Groundwater and Geothermal Systems.– CRC Press, London. 522 p. doi: 10.1201/b10499

BUKOVAC, J., ŠUŠNJAR, M., POLJAK, M. & ČAKALO, M. (1984): Osnovna geološka karta SFRJ 1:100.000, List Črnomelj L33–91 [Basic Geological Map of the Republic of Croatia, 1:100.000, Črnomelj sheet – in Croatian].– Federal Geological Survey, Belgrade.

CALCAGNO, P., BAUJARD, C., GUILLOU-FROTTIER, L., DAGALLIER, A. & GENTER, A. (2014): Estimation of the deep geothermal potential within the Tertiary Limagne basin (French Massif Central): An integrated 3D geological and thermal approach.– Geothermics, 51, 496–508. doi: 10.1016/j.geothermics.2014.02.002

CERMAK, V., & RYBACH, L. (1982): Thermal properties: Thermal conductivity and specific heat of minerals and rocks.– In: ANGENEISTER, G. (ed.): Landolt-Börnstein: Zahlenwerte and Funktionen aus Naturwissenschaften und Technik, Neue Serie, Physikalische Eigenschaften der Gesteine. Springer Verlag, Berlin, Heidelberg and New York, V/1a, 305–343.

CLOETINGH, S., CORNU, T., ZIEGLER, P.A., BEEKMAN, F. & ENTEC Working Group (2006): Neotectonics and intraplate continental topography of the northern Alpine Foreland.– Earth. Sci. Rev., 74, 127–196. doi: 10.1016/j.earscirev.2005.06.001

CRITTENDEN, J.C., TRUSSELL, R.R., HAND, D.W., HOWE, K.J. & TCHOBANOGLOUS, G. (2012): MWH’s Water Treatment.– John Wiley & Sons, Inc. doi: 10.1002/9781118131473

CSONTOS, L. & VÖRÖS, A. (2004): Mesozoic plate tectonic reconstruction of the Carpathian region.– Palaeogeogr. Palaeoclimatol. Palaeoecol., 210/1, 1–56. doi: 10.1016/j.palaeo.2004.02.033

D’AGOSTINO, N., AVALLONE, A., CHELONI, D., D’ANASTASIO, E., MANTENUTO, S. & SELVAGGI, G. (2008): Active tectonics of the Adriatic region from GPS and earthquake slip vectors.– Journal of Geophysical Research: Solid Earth, 113/B12. doi: 10.1029/2008JB005860

DHMZ. (2021): Monthly values and extremes.– Državni Hidrometeorološki Zavod [Croatian Meteorological and Hydrological Service – in Croatian]. (retrieved January 18, 2021) from https://meteo.hr/klima.php?section=klima_podaci¶m=k2_1

DIERSCH, H.J.G. (2014): FEFLOW: Finite Element Modeling of Flow, Mass and Heat Transport in Porous and Fractured Media.– Springer Berlin, Heidelberg. doi: 10.1007/978‐3‐642‐38739‐5

DI NAPOLI, R., MARTORANA, R., ORSI, G., AIUPPA, A., CAMARDA, M., DE GREGORIO, S., GAGLIANO CANDELA, E., LUZIO, D., MESSINA, N., PECORAINO, G. et al. (2011): The Structure of a Hydrothermal System from an Integrated Geochemical, Geophysical, and Geological Approach: The Ischia Island Case Study.– Geochem. Geophys. Geosyst., 12/7. doi: /10.1029/2010GC003476

DOMENICO, P.A. & SCHWARTZ, F.W. (1997): Physical and Chemical Hydrogeology (2nd edition).– Wiley, New York. 506 p.

DOMENICO, P. A. & PALCIAUSKAS, V. V. (1973): Theoretical Analysis of Forced Convective Heat Transfer in Regional Ground-Water Flow.– GSA Bulletin, 84/12, 3803–3814. doi: 10.1130/0016-7606(1973)84<3803:TAOFCH>2.0.CO;2

EVANS, M.A. & FISCHER, M.P. (2012): On the distribution of fluids in folds: A review of controlling factors and processes.– J. Struct. Geol., 44, 2–24. doi: 10.1016/j.jsg.2012.08.003

FABBRI, P., POLA, M., PICCININI, L., ZAMPIERI, D., ROGHEL, A. & DALLA LIBERA, N. (2017): Monitoring, utilization and sustainable development of a low-temperature geothermal resource: A case study of the Euganean Geothermal Field (NE, Italy).– Geothermics, 70, 281–294. doi: 10.1016/j.geothermics.2017.07.002.

FAULKNER, D. R., JACKSON, C. A. L., LUNN, R. J., SCHLISCHE, R. W., SHIPTON, Z. K., WIBBERLEY, C. A. J., & WITHJACK, M. O. (2010): A review of recent developments concerning the structure, mechanics and fluid flow properties of fault zones.– J. Struct. Geol., 32/11, 1557–1575. doi: 10.1016/j.jsg.2010.06.009

FEDERAL GEOLOGICAL SURVEY. (1970): Geological Map of SFRY 1:500.000.– Federal Geological Survey, Beograd.
FETTER, C.W. (2001): Applied Hydrogeology (4th edition).– Prentice Hall, Upper Saddle River, New Jersey.

FLÓVENZ, Ó.G., HERSIR, G.P., SÆMUNDSSON, K., ÁRMANNSSON, H. & FRIDRIKSSON, T. (2012): Geothermal Energy Exploration Techniques.– In: SAYIGH, A. (ed.): Comprehensive Renewable Energy, 51–95. doi: 10.1016/B978-0-08-087872-0.00705-8

FUCHS, S. & BALLING, N. (2016): Improving the temperature predictions of subsurface thermal models by using high-quality input data. Part 1: Uncertainty analysis of the thermal-conductivity parameterization.– Geothermics, 64, 42–54. doi: 10.1016/j.geothermics.2016.04.010

GARG, S.K., PRITCHETT, J.W., WANNAMAKER, P.E. & COMBS, J. (2007): Characterization of geothermal reservoirs with electrical surveys: Beowawe geothermal field.– Geothermics, 36/6, 487–517. doi: 10.1016/j.geothermics.2007.07.005

GHASEMIZADEH, R., HELLWEGER, F., BUTSCHER, C. et al. (2012): Review: Groundwater flow and transport modeling of karst aquifers, with particular reference to the North Coast Limestone aquifer system of Puerto Rico.– Hydrogeol J., 20, 1441–1461. doi: 10.1007/s10040-012-0897-4

GOLDSCHEIDER, N., MÁDL-SZŐNYI, J., ERŐSS, A. & SCHILL, E. (2010): Review: Thermal water resources in carbonate rock aquifers.– Hydrogeol. J., 18/6, 1303–1318. doi: 10.1007/s10040-010-0611-3

GORJANOVIĆ-KRAMBERGER, D. (1905): Geologijske i hidrografijske prilike oko Topuskoga s obzirom na topuske terme [Geological and hydrographic conditions in the area of Topusko with respect to thermal spring – in Croatian].– Works of the Yugoslav Academy of Sciences and Arts – Mathematics and Science Division, 37, 2–34.

GORJANOVIĆ-KRAMBERGER, D. (1917): Geologijske i hidrografijske prilike oko Topuskog s osobitim obzirom na Topuske terme [Geological and hydrographic conditions in the area of Topusko with particular interest in thermal springs – in Croatian].– Reports of discussions in Mathematics and Science Division, Yugoslav Academy of Sciences and Arts, Zagreb.

GRENERCZY, G., SELLA, G.F., STEIN, S. & KENYERES, A., (2005): Tectonic implications of the GPS velocity field in the northern Adriatic region.– Geophys. Res. Lett., 32/16. doi: 10.1029/2005GL022947

HAVRIL, T., MOLSON, J.W. & MÁDL-SZŐNYI, J. (2016): Evolution of fluid flow and heat distribution over geological time scales at the margin of unconfined and confined carbonate sequences - A numerical investigation based on the Buda Thermal Karst analogue.– Mar. and Pet. Geol., 78, 738–749. doi: 10.1016/j.marpetgeo.2016.10.001

HEASLER, H.P., JAWOROWSKI, C. & FOLEY, D. (2009): Geothermal systems and monitoring hydrothermal features.– In: YOUNG, R. & NORBY, L. (eds.): Geological Monitoring. Geological Society of America, Boulder. doi:/10.1130/2009.monitoring(05)

HERAK, D., HERAK, M. & TOMLJENOVIĆ, B. (2009): Seismicity and earthquake focal mechanisms in North-Western Croatia.– Tectonophysics, 465/1–4, 212–220. doi: 10.1016/j.tecto.2008.12.005

HERAK, M. & HERAK, D. (2023): Properties of the Petrinja (Croatia) earthquake sequence of 2020–2021 – Results of seismological research for the first six months of activity.– Tectonophysics, 858, 229885. doi: 10.1016/j.tecto.2023.229885

HORVÁTH, F. & TARI, G. (1999): The IBS Pannonian basin project: A review of the main results and their bearings on hydrocarbon exploration.– Geol. Soc. London Spec. Publ., 156, 195–213. doi: 10.1144/GSL.SP.1999.156.01.11

HORVÁTH, F., BADA, G., SZAFIÁN, P., TARI, G., ÁDÁM, A. & CLOETINGH, S. (2006): Formation and deformation of the Pannonian Basin: Constraints from observational data.– Geological Society Memoir, 32, 191–206. doi: 10.1144/GSL.MEM.2006.032.01.11

HORVÁTH, F., MUSITZ, B., BALÁZS, A., VÉGH, A., UHRIN, A., NÁDOR, A., KOROKNAI, B., PAP, N., TÓTH, T. & WÓRUM, G. (2015): Evolution of the Pannonian basin and its geothermal resources.– Geothermics, 53, 328–352. doi: 10.1016/j.geothermics.2014.07.009

HOUNSLOW, A.W. (1995): Water Quality Data: Analysis and Interpretation (1st ed.).– CRC Press. doi: 10.1201/9780203734117

HRVATOVIĆ, H. (2005): Geological Guidebook through Bosnia and Herzegovina.– Geological Survey Sarajevo-Geology Department,163 p.

KAISER, B.O., CACACE, M., & SCHECK-WENDEROTH, M. (2013): 3D coupled fluid and heat transport simulations of the Northeast German Basin and their sensitivity to the spatial discretization: different sensitivities for different mechanisms of heat transport.– Environ. Earth Sci., 70/8, 3643–3659. doi: 10.1007/s12665-013-2249-7

KASTELIC, V. & CARAFA, M.M.C. (2012): Fault slip rates for the active External Dinarides thrust‐and‐fold belt.– Tectonics, 31/3. doi: 10.1029/2011TC003022

KHODAYAR, M. & BJÖRNSSON, S. (2024): Conventional Geothermal Systems and Unconventional Geothermal Developments: An Overview.– Open J. Geol., 14/2, 196–246. doi: 10.4236/ojg.2024.142012

KOROLIJA, B., ŽIVALJEVIĆC, T. & ŠIMUNIĆ, A. (1980): Osnovna geološka karta SFRJ 1:100.000, List Slunj L 33–104 [Basic Geological Map of SFRY 1:100.000, Slunj sheet – in Croatian].– Institute for Geological Research, Zagreb, Geological Survey, Sarajevo; Federal Geological Survey, Belgrade.

KOROLIJA, B., ŽIVALJEVIĆ, T. & ŠIMUNIĆ, A. (1981): Osnovna geološka karta SFRJ 1:100.000, Tumač za list Slunj L33–104 [Basic Geological Map of SFRY 1:100.000, Explanatory notes for Slunj sheet – in Croatian].– Institute for geological research, Zagreb; Geological survey, Sarajevo; Federal geological survey: Belgrade.

KOSOVIĆ, I., BRIŠKI, M., PAVIĆ, M., PADOVAN, B., PAVIČIĆ, I., MATOŠ, B., POLA M. & BOROVIĆ, S. (2023): Reconstruction of Fault Architecture in the Natural Thermal Spring Area of Daruvar Hydrothermal System Using Surface Geophysical Investigations (Croatia).– Sustainability, 15/16,12134. doi: 10.3390/su151612134

KOSOVIĆ, I., MATOŠ, B., PAVIČIĆ, I., POLA, M., MILEUSNIĆ, M., PAVIĆ, M. & BOROVIĆ, S. (2024): Geological modeling of a tectonically controlled hydrothermal system in the southwestern part of the Pannonian basin (Croatia).– Front. Earth Sci., 12. doi: 10.3389/feart.2024.1401935

LALOUI, L. & ROTTA LORIA, A. F. (2020): Heat and mass transfers in the context of energy geostructures.– In: Analysis and Design of Energy Geostructures. Academic Press., 69–135. doi: 10.1016/B978-0-12-816223-1.00003-5

LEI, H. & ZHU, J. (2013): Numerical modeling of exploitation and reinjection of the Guantao geothermal reservoir in Tanggu District, Tianjin, China.– Geothermics, 48, 60–68. doi: 10.1016/j.geothermics.2013.03.008

LENKEY, L., DÖVÉNYI, P., HORVÁTH, F. & CLOETINGH, S.A.P.L. (2002): Geothermics of the Pannonian basin and its bearing on the neotectonics.– In: CLOETINGH, S.A.P.L, HORVÁTH, F., BADA, G. & LANKREIJER, A.C. (eds.): EGU Stephan Mueller Special Publication Series, 3, 29–40. doi: 10.5194/smsps-3-29-2002

MACENIĆ, M., KUREVIJA, T. & MEDVED, I. (2020): Novel geothermal gradient map of the Croatian part of the Pannonian basin system based on data interpretation from 154 deep exploration wells.– Renew. Sustain. Energy Rev., 132. doi: 10.1016/J.RSER.2020.110069

MÁDL-SZŐNYI, J. & TÓTH, Á. (2015): Basin-scale conceptual groundwater flow model for an unconfined and confined thick carbonate region.– Hydrogeol. J., 23/7, 1359–1380. doi: 10.1007/s10040-015-1274-x

MAJER, V. (1978): Stijene “dijabaz-spilit-keratofirske asocijacije” u području Abez-Lasinja u Pokuplju i Baniji (Hrvatska, Jugoslavija) [Rocks of diabase-spilite-keratophyre association in the area of Abez-Lasinja in Pokuplje and Banije (Croatia, Yugoslavia) – in Croatian].– Acta Geol., 9/4, 42, 137–158.

MAJER, V. (1993): Ofiolitni kompleks Banije s Pokupljem u Hrvatskoj i Pastirevo u Bosni [Ophiolite complexes of Banija and Pokuplje in Croatia and Pastirevo in Bosnia – in Croatian].– Acta Geol., 23/2, 39–84.

MANDAL, A., BASANTARAY, A.K., CHANDROTH, A. & MISHRA, U. (2019): Integrated Geophysical Investigation to Map Shallow Surface Alteration/Fracture Zones of Atri and Tarabalo Hot Springs, Odisha, India.– Geothermics, 77, 24–33. doi: 10.1016/j.geothermics.2018.08.007

MARINI, L. (2000): Geochemical techniques for the exploration and exploitation of geothermal energy.– Dipartamento per lo Studio del Territorio e delle sue Risorse, Universita degli Studi di Genova, Italy.

MARTINSEN, G., BESSIERE, H., CABALLERO, Y., KOCH, J., COLLADOS- LARA, A. J., MANSOUR, M., SALLASMAA, O., PULIDO-VELAZQUEZ, D., WILLIAMS, N.H., ZAADNOORDIJK, W.J. & STISEN, S. (2022): Developing a pan-European high-resolution groundwater recharge map – Combining satellite data and national survey data using machine learning.– Science of the Total Environment, 822 p. doi: 10.1016/j.scitotenv.2022.153464

MAZOR, E. (2004): Chemical and Isotopic Groundwater Hydrology, 3rd ed.– Marcel Dekker, New York, 13–179 p.

MOECK, I.S. (2014): Catalog of geothermal play types based on geologic controls.– Renewable and Sustainable Energy Reviews, 37, 867–882. doi: 10.1016/j.rser.2014.05.032

MONTANARI, D., MINISSALE, A., DOVERI, M., GOLA, G., TRUMPY, E., SANTILANO, A. & MANZELLA, A. (2017): Geothermal resources within carbonate reservoirs in western Sicily (Italy): A review.– Earth-
Science Reviews, 169, 180–201. doi: 10.1016/j.earscirev.2017.04.016

MROCZEK, E.K., MILICICH, S.D., BIXLEY, P.F., SEPULVEDA, F., BERTRAND, E.A., SOENGKONO, S. et al. (2016): Ohaaki geothermal system: Refinement of a conceptual reservoir model.– Geothermics, 59, 311–324. doi: 10.1016/j.geothermics.2015.09.002

MUFFLER, P. & CATALDI, R. (1978): Methods for regional assessment of geothermal resources.– Geothermics, 7/2–4, 53–89. doi: 10.1016/0375-6505(78)90002-0

NIELD, D.A. & BEJAN, A. (1999): Convection in Porous Media (2nd Edition).– Springer, New York. doi: 10.1007/978-1-4757-3033-3

OJHA, L., KARUNATILLAKE, S., KARIMI, S. & BUFFO, J. (2021): Amagmatic hydrothermal systems on Mars from radiogenic heat.– Nat. Commun., 12/1. doi: 10.1038/s41467-021-21762-8

PAVELIĆ, D. (2001): Tectonostratigraphic model for the North Croatian and North Bosnian sector of the Miocene Pannonian Basin System.– Basin Res., 13, 359–376. doi: 10.1046/j.0950-091x.2001.00155.x

PAVELIĆ, D., KOVAČIĆ, M., MIKNIĆ, M., AVANIĆ, R., VRSALJKO, D., BAKRAČ, K., TIŠLJAR, J., GALOVIĆ, I. & BORTEK, Ž. (2003): The Evolution of the Miocene Environments in the Slavonian Mts. Area (Northern Croatia).– In: VLAHOVIĆ, I. & TIŠLJAR, J. (eds.): 22nd IAS Meeting of Sedimentology – Opatija 2003, Field Trip Guidebook. Croatian Geological Survey, Zagreb.

POLA, M., CACACE, M., FABBRI, P., PICCININI, L., ZAMPIERI, D. & TORRESAN, F. (2020): Fault Control on a Thermal Anomaly: Conceptual and Numerical Modeling of a Low-Temperature Geothermal System in the Southern Alps Foreland Basin (NE Italy).– J. Geophys. Res. Solid Earth, 125/5, e2019JBO17394. doi: 10.1029/2019JB017394

PAVIĆ, M., KOSOVIĆ, I., POLA, M., URUMOVIĆ, K., BRIŠKI, M., & BOROVIĆ, S. (2023): Multidisciplinary Research of Thermal Springs Area in Topusko (Croatia).– Sustainability, 15/6, 5498. doi: 10.3390/su15065498

PAVIĆ, M., BRIŠKI, M., POLA, M., & BOROVIĆ, S. (2024): Hydrogeochemical and environmental isotope study of Topusko thermal waters, Croatia.– Environ. Geochem. Health, 46/4, 133. doi: 10.1007/s10653-024-01904-9

POURASKARPARAST, Z., AGHAEI, H., COLOMBERA, L., MASOERO, E. & GHAEDI, M. (2024): Fracture aperture: A review on fundamental concepts, estimation methods, applications, and research gaps.– Mar. Pet. Geol., 164, 106818. doi: 10.1016/j.marpetgeo.2024.106818

PRELOGOVIĆ, E., SAFTIĆ, B., KUK, V., VELIĆ, J., DRAGAŠ, M. & LUČIĆ, D. (1998): Tectonic activity in the Croatian part of the Pannonian basin.– Tectonophysics, 297/1–4, 283–293. doi: 10.1016/S0040-1951(98)00173-5

RMAN, N. & TÓTH, G. (2011): Hydrogeological conceptual model.– Geological Survey of Slovenia, Ljubljana; Geological Institute of Hungary, Budapest [in Hungarian], 25 p.

RMAN, N. (2014): Analysis of long-term thermal water abstraction and its impact on low-temperature intergranular geothermal aquifers in the Mura-Zala basin, NE Slovenia.– Geothermics, 51, 214–227. doi: 10.1016/j.geothermics.2014.01.011

RMAN, N., BĂLAN, L.L., BOBOVEČKI, I., GÁL, N., JOLOVIĆ, B., LAPANJE, A. et al. (2020): Geothermal sources and utilization practice in six countries along the southern part of the Pannonian basin.– Environ. Earth Sci., 79, 1–12. doi: 10.1007/s12665-019-8746-6

ROYDEN, L.H., & HORVÁTH, F. (1988): The Pannonian Basin: A Study in Basin Evolution.– American Association of Petroleum Geologists. doi: 10.1306/M45474

SAFTIĆ, B., VELIĆ, J., SZTANO, O., JUHASZ, G. & IVKOVIĆ, Ž. (2003): Tertiary Subsurface Facies, Source Rocks and Hydrocarbon Reservoirs in the SW Part of the Pannonian Basin (Northern Croatia and South-Western Hungary). Geologia Croatica, 56/1, 101–122. doi:10.4154/232

SCANLON, B., & DUTTON, A. (2000): Groundwater Recharge in Texas.– The University of Texas at Austin, and Marios Sophocleous, Kansas Geological Survey, Lawrence, KS.

SCANLON, B.R., MACE, R.E., BARRETT, M.E. & SMITH, B. (2003): Can we simulate regional groundwater flow in a karst system using equivalent porous media models? Case study, Barton Springs Edwards aquifer, USA.– Journal of Hydrology, 2761–4, 137–158. doi: 10.1016/S0022-1694(03)00064-7

SCHMID, S.M., BERNOULLI, D., FÜGENSCHUH, B., MATENCO, L., SCHEFER, S., SCHUSTER, R., TISCHLER, M. & USTASZEWSKI, K. (2008): The Alpine-Carpathian-Dinaridic orogenic system: Correlation and evolution of tectonic units.– Swiss J. Geosci., 101, 139–183. doi: 10.1007/s00015-008-1247-3

SCHMID, S. M., FÜGENSCHUH, B., KOUNOV, A., MAŢENCO, L., NIEVERGELT, P., OBERHÄNSLI, R., PLEUGER, J., SCHEFER, S., SCHUSTER, R., TOMLJENOVIĆ, B., USTASZEWSKI, K. & VAN HINSBERGEN, D.J.J. (2020): Tectonic units of the Alpine collision zone between Eastern Alps and western Turkey.– Gondwana Research, 78, 308–374. doi: 10.1016/j.gr.2019.07.005

STEVANOVIĆ, Z., DULIĆ, I. & DUNČIĆ, M. (2015): Some experiences in tapping deep thermal waters of the Triassic karstic aquifer in the Pannonian Basin of Serbia.– Central European Geology, 581–2, 50–61. doi: 10.1556/24.58.2015.1-2.3

STYLIANOU, I., TASSOU, S., CHRISTODOULIDES, P., PANAYIDES, I. & FLORIDES, G. (2016): Measurement and analysis of thermal properties of rocks for the compilation of geothermal maps of Cyprus.– Renewable Energy, 88, 418–429. doi:10.1016/j.renene.2015.10.058

SZANYI, J. & KOVÁCS, B. (2010): Utilization of geothermal systems in South-East Hungary.– Geothermics, 39/4, 357–364. doi: 10.1016/j.geothermics.2010.09.004

ŠEGOTIĆ, B. & ŠMIT, I. (2007): Studija optimirane energetske učinkovitosti korištenja geotermalnih voda [Study of Optimized Energy Efficiency of Geothermal Water Use – in Croatian].– Unpublished report, Termoinženjering- projektiranje, Zagreb.

ŠIKIĆ, K. (1990): Osnovna geološka karta Republike Hrvatske 1:100.000, list Bosanski Novi L 33–105 [Basic Geological Map of the Republic of Croatia 1:100.000, Bosanski Novi sheet – in Croatian].– Croatian Geological Survey, 2014.

ŠIKIĆ, K. (1990): Osnovna geološka karta Republike Hrvatske 1:100.000, Tumač za list Bosanski Novi L 33-70 [Basic Geological Map of the Republic of Croatia 1:100.000, Explanatory notes for Bosanski Novi sheet – in Croatian].– Croatian Geological Survey Zagreb, 2014.

ŠIMUNIĆ, A. (2008): Topusko.– In: ŠIMUNIĆ, A. & HEĆIMOVIĆ, I. (eds.): Geotermalne i mineralne vode Republike Hrvatske [Mineral and Thermal Waters of the Republic of Croatia – in Croatian]. Croatian Geological Survey, Zagreb.

TARI, G., DÖVÉNYI, P., DUNKL, I., HORVÁTH, F., LENKEY, L., STEFANESCU, M., SZAFIÁN, P. & TÓTH, T (1999): Lithospheric structure of the Pannonian basin derived from seismic, gravity and geothermal data.– Geol. Soc. London Spec. Publ., 156, 215–250. doi: 10.1144/GSL.SP.1999.156.01.12

TEUTSCH, G. & SAUTER, M. (1991): Groundwater modeling in karst terranes: Scale effects, data acquisition and field validation.– In: Third conference on hydrogeology, ecology, monitoring, and management of ground water in Karst Terranes.– National Ground Water Association, Dublin, Ohio, 17–35.

TOMLJENOVIĆ, B. & CSONTOS, L. (2001): Neogene–Quaternary structures in the border zone between Alps, Dinarides and Pannonian Basin (Hrvatsko zagorje and Karlovac Basins, Croatia).– Int. J. Earth Sci., 90/3, 560–578. doi: 10.1007/s005310000176

TOMLJENOVIĆ, B. (2002): Strukturne značajke Medvednice i Samoborskog gorja [Structural features of Medvednica and Samobor hills – in Croatian].– Unpubl. PhD Thesis, Faculty of Mining, Geology and Petroleum Engineering, University of Zagreb, Zagreb.

TOMLJENOVIĆ, B., CSONTOS, L., MÁRTON, E. & MÁRTON, P. (2008): Tectonic evolution of the northwestern Internal Dinarides as constrained by structures and rotation of Medvednica Mountains, North Croatia.– Geol. Soc. London Spec. Publ., 298/1, 145–167. doi: 10.1144/SP298.8

TORRESAN, F., PICCININI, L., CACACE, M., POLA, M., ZAMPIERI, D. & FABBRI, P. (2022): Numerical modeling as a tool for evaluating the renewability of geothermal resources: the case study of the Euganean Geothermal System (NE Italy).– Environ. Geochem. Health, 44/7, 2135–2162. doi: 10.1007/s10653-021-01028-4

TÓTH, J. (2009): Gravitational systems of groundwater flow: theory, evaluation, utilization.– Cambridge University Press, Cambridge. doi: 10.1017/CBO9780511576546

TURCOTTE, D.L. & SCHUBERT, G. (1982): Geodynamics: Applications of continuum mechanics to geological problems.– Wiley, New York, 464 p.

USTASZEWSKI, K., SCHMID, S. M., FÜGENSCHUH, B., TISCHLER, M., KISSLING, E. & SPAKMAN, W. (2008): A map-view restoration of the Alpine-Carpathian-Dinaridic system for the early Miocene.– Swiss J. Geosci., 101/Suppl 1, 273-294. doi: 10.1007/s00015-008-1288-7

USTASZEWSKI, K., KOUNOV, A., SCHMID, S. M., SCHALTEGGER, U., KRENN, E., FRANK, W. & FÜGENSCHUH, B. (2010): Evolution of the Adria-Europe plate boundary in the northern Dinarides: From continent-continent collision to back-arc extension.– Tectonics, 29/6. doi: 10.1029/2010TC002668

USTASZEWSKI, K., HERAK, M., TOMLJENOVIĆ, B., HERAK, D. & MATEJ, S. (2014): Neotectonics of the Dinarides-Pannonian Basin transition and possible earthquake sources in the Banja Luka epicentral area.– J. Geodyn., 82, 52–68. doi: 10.1016/j.jog.2014.04.006

VASS, I., TÓTH, T.M., SZANYI, J. & KOVÁCS, B. (2018): Hybrid numerical modelling of fluid and heat transport between the overpressured and gravitational flow systems of the Pannonian Basin.– Geothermics, 72, 268–276. doi: 10.1016/j.geothermics.2017.11.013

VELIĆ, I. & SOKAČ, B. (1982): Novi nalazl naslaga donjeg i srednjeg trijasa u zapadnom Kordunu (središnja Hrvatska) [New discoveries of the Lower and Middle Triassic in the western part of Kordun area (central Croatia) – in Croatian].– Geološki vjesnik, 35, 47–57.

VLAHOVIĆ, I., TIŠLJAR, J., VELIĆ, I. & MATIČEC, D. (2005): Evolution of the Adriatic Carbonate Platform: Palaeogeography, main events and depositional dynamics.– Palaeogeogr. Palaeoclimatol. Palaeoecol., 220/3–4, 333–360. doi: 10.1016/j.palaeo.2005.01.011

WORTHINGTON, S.R.H., FOLEY, A.E., & SOLEY, R.W.N. (2019): Transient characteristics of effective porosity and specific yield in bedrock aquifers.– J. Hydrol., 578, 124129. doi: 10.1016/j.jhydrol.2019.124129

XIONG, J., LIN, H., DING, H., PEI, H., RONG, C. & LIAO, W. (2020): Investigation on thermal property parameters characteristics of rocks and its influence factors.– Natural Gas Industry B, 7/3, 298–308. doi: 10.1016/j.ngib.2020.04.001

URL 1: https://www.avenza.com/avenza-maps/. Accessed on 29 April, 2024

URL 2: https://www.esri.com/news/arcnews/spring12articles/introducing-arcgis-101.html. Accessed on 29 April, 2024