Ichnotaxonomy of microboring traces in marine aphotic depths
Main Article Content
Abstract
Microboring traces in carbonate skeletal fragments deposited in aphotic depths of the oceans are studied, evaluated, and described with respect to their marine ecology and palaeoecology as well as ichnotaxonomy. Sand-size deep sea sediment particles dredged from depths ranging between 600 and 3266 m of the Bermuda Pedestal, Central Atlantic Ocean, the Florida Escarpment, the Mediterranean Sea, the Red Sea and the Indian Ocean were studied. Following ichnological rules, trace fossils are described as ichnogenera and ichnospecies, defined as products of organismal behaviour. This, in our view, refers to the growth habit of microboring organisms in response to environmental stimuli within the substrate they penetrate. The problem of palaeobathymetry is discussed in conjunction with the distinction between light-dependent and light independent microboring organisms, with the emphasis on the latter. We considered this distinction to be important because only the light-dependent microborers have been recognized as indicators of ancient depositional depths, whereas the light-independent ones are expected to occur at any depth, subject to the availability of organic nutrients. Microboring organisms often leave morphologically similar traces due to convergent evolution. Their responses may change during their life cycle; they may produce different traces when pursuing their vegetative vs. reproductive functions. New ichnotaxa are described. All are regarded as organotrophs given their aphotic zone deep sea origin. This work presents the most complete set of deep sea microbial euendolith traces, to date.
Downloads
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors have copyright and publishing rights on all published manuscripts.
References
ALBECK, S., AIZENBERG, J., ADDADI, L. & WEINER, S. (1993): Interaction of various skeletal intracrystalline components with calcite crystals.– Journal of the American Chemical Society, 115, 11691–11697. doi: 10.1021/ja00078a005
AL-THUKAIR, A.A. & GOLUBIC, S. (1991a): Five new Hyella species from the Arabian Gulf.– Algological Studies, 64, 167–197.
AL-THUKAIR, A.A. & GOLUBIC, S. (1991b): New endolithic cyanobacteria from the Arabian Gulf. I. Hyella immanis sp. nov.– Journal of Phycology 27, 766–780. doi: 10.1111/j.0022-3646.1991.00766.x
AL-THUKAIR, A.A., GOLUBIC, S. & ROSEN, G. (1994): New euendolithic cyanobacteria from the Bahama Bank and the Arabian Gulf: Hyella racemus sp. nov.– Journal o f Phycology, 30, 764–769. doi: 10.1111/j.0022-3646.1994.00764.x
AMANN, R.I., LUDWIG, W. & SCHLEIFER, K.H. (1995): Phylogenetic identification and in situ detection of individual microbial cells without cultivation.– Microbiological Review 59/1, 143–169. doi: 10.1128/mr.59.1.143-169.1995
AVERILL, C., WERBIN, Z.E., ATHERTON, K.F., BHATNAGAR, J.M. & DIETZE, M.C. (2021): Soil microbiome predictability increases with spatial and taxonomic scale.– Nature Ecology and Evolution, 5, 747–756. doi: 10.1038/s41559-021-01445-9
BACHMANN, E. (1915): Kalkoesende Algen.– Berichte der Deutschen Botanischen Gesellschaft, 33, 45-57.
BATTERS, E.A.L. (1892): On Conchocelis, a new genus of perforating algae.– Phycological Memoirs, 1, 25–28.
BATHURST, R.G.C. (1966): Boring algae, micrite envelopes, and lithification of molluscan biosparites.– Journal of Geology, 5, 15–32.
BAUCON, A., BORDY, E., BRUSTUR, T., BUATOIS, L.A., CUNNINGHAM, T., DE, C., DUFFIN, C., FELLETTI, F., GAILLARD, C., HU, B., HU, L., JENSEN, S., KNAUST, D., LOCKLEY, M., LOWE, P., MAYOR, A., MAYORAL, ED., MIKULAS. R., MUTTONI, G., DE CARVALHO, C.N. & ZHANG, W.-T. (2012): A History of Ideas in Ichnology.– In: BROMLEY, D. & KNAUST, D. (eds.): Trace Fossils as Indicators of Sedimentary Environments. Developments in Sedimentology, 64, 3–43. doi: 10.1016/B978-0-444-53813-0.00001-0
BEECH, I.B. & GAYLARDE, C.C. (1999): Recent advances in the study of biocorrosion: an overview.– Revista de Microbiologia, 30/3, 177–190. doi: 10.1590/S0001-37141999000300001
BENGTSON, S., SALLSTEDT, T., BELIVANOVA, V. & WHITEHOUSE, M. (2017) Three-dimensional preservation of cellular and subcellular structures suggests 1.6 billion-year-old crown-group red algae.– PLoS Biology, 15/3, e2000735. doi: 10.1371/journal.pbio.2000735
BENTIS, C.J., KAUFMAN, L. & GOLUBIC, S. (2000): Endolithic fungi in reef-building corals (Order: Scleractinia) are common, cosmopolitan, and potentially pathogenic.– Biological Bulletin, 198, 254–260. doi: 10.2307/1542528
BERTLING, M. (2007): What’s in a Name? Nomenclature, Systematics, Ichnotaxonomy.– In: MILLER III, V. (ed.): Trace Fossils. Elsevier, Amsterdam, 81–91. doi: 10.1016/B978-044452949-7/50131-5
BERTLING, M., BRADDY, S.J., BROMLEY, R.G., DEMATHIEU, R., GENISE, J., MIKUÁŠ, J.K., NIELSEN, J.K., NIELSEN, K.S.S, RINDSBERG, K., SCHLIRF, M. & UCHMAN, A. (2006): Names for trace fossils: a uniform approach.– Lethaia, 39, 265–286. doi: 10.18261/let.55.3.3
BERTLING, M., BUATOIS, L., KNAUST, D., LAING, B., MÁNGANO, M.G., MEYER, N., MIKULÁŠ, R., MINTER, N.J., NEUMANN, C., RINDSBERG, A.K., UCHMAN, A. & WISSHAK, M. (2022): Names for trace fossils 2.0: theory and practice in ichnotaxonomy.–Lethaia 55: 1-19. doi: 10.18261/let.55.3.3
BOEKSCHOTEN, G. J. (1966): Shell borings of sessile epibiontic organisms as paleoecological guides (with examples from the Dutch coast).– Palaeogeography, Palaeoclimatology, Palaeoecology, 2, 333–379. doi: 10.1016/0031-0182(66)90023-X
BORNET, E. (1891): Note sur l’Ostracoblabe implexa Bornet and Flahault.– Journal de Botanique, 5, 397–400.
BORNET, E. & FLAHAULT, C. (1888): Note sur deux noveaux genres d’algues perforantes.–Journal de Botanique, 2, 161–165.
BORNET, E. & FLAHAULT, C. (1889): Sur quelques plantes vivant dans le test calcaire des mollusques.– Bulletin de la Société botanique de France, 36, 147–179.
BOUDAGHER-FADEL, M.K. & PRICE, G.D. (2010): American Miogypsinidae: An analysis of their phylogeny and biostratigraphy.– Micropaleontology, 56/6, 567-586
BRETT, C.E., BOUCOT, A.J. & JONES, B. (1993): Absolute depths of Silurian benthic assemblages.– Lethaia, 26, 25– 40. doi: 10.1111/j.1502-3931.1993.tb01507.x
BRETT, C.E., BAIRD, G.C. & SPEYER, S.E. (1997): Fossil Lagerstätten: stratigraphic record of paleontological and taphonomic events.– In: BRETT, C.E. & BAIRD, G.C. (eds.): Paleontological Events: Stratigraphic Paleontological and Evolutionary Implications. Columbia University Press, New York, 3-40.
BROMLEY, R.G. (1990): Trace fossils: Biology and taphonomy.– Special Topics Paleontology Series. Unwin Hyman, London, 310 p.
BROMLEY, R.G. & NIELSEN, K.S.S. (2015): Bioerosional ichnotaxa and the fossilization barrier.– Annales Societatis Geologorum Poloniae, 85, 4453–4455. doi: 10.14241/asgp.2015.033
BUDD, D.A. & PERKINS, R.D. (1980): Bathymetric zonation and palaeoecological significance of microborings in Puerto Rican shelf and slope sediments.– Journal of Sedimentary Petrology, 50, 881–904. doi: 10.1306/212F7B17-2B24-11D7-8648000102C1865D
BUNDSCHUH, M. (2000): Silurische Mikrobohrspuren. Ihre Beschreibung und Verteilung in verschiedenen Faziesräumen (Schweden, Litauen, Großbritannien und USA).– Unpubl. Ph.D. Thesis, FB Geowissenschaften, J.W.-Goethe-Universität Frankfurt a.M., 129 p.
BUTTERFIELD, N.J. (2015): Early evolution of the eukaryote.– Palaeontology, 58, 5–17. doi: 10.1111/pala.12139
CAMPBELL, S.E. (1980): Palaeoconchocelis starmachii, a carbonate boring microfossil from the Upper Silurian of Poland (425 million years old): implications for the evolution of the Bangiaceae (Rhodophyta).– Phycologia, 9/1, 25–36. doi: 10.2216/i0031-8884-19-1-25.1
CAMPBELL, S.E. (1982a): Precambrian endoliths discovered.– Nature, 299, 429–431. doi:10.1038/299429a0
CAMPBELL, S.E. (1982b): The modern distribution and geological history of calcium carbonate boring microorganisms.– In: WESTBROEK, P. & JONG, E.W. (eds.): Biomineralization and Biological Metal Accumulation. D. Reidel Publ. Co., Dordrecht, 99–104. doi: 10.1007/978-94-009-7944-4_8
CAMPBELL, S.E. & COLE, K. (1984): Developmental studies on cultured endolithic Conchocelis (Rhodophyta).– Hydrobiologia, 116, 201–208. doi: 10.1007/BF00027666
CAMPBELL, S.E. & HOFFMAN, E.J. (1979): Endoliths and their microborings: how close is the fit?.– 2nd International Symposium on Fossil Algae. Abstract with Program.
CAMPBELL, S.E., KAZMIERCZAK, J. & GOLUBIC, S. (1979): Palaeoconchocelis starmachii n. gen, n. sp., a Silurian endolithic rhodophyte (Bangiaceae).– Acta Palaeontologica Polonica, 25, 405–408.
CAMPBELL, S.E., DROBNE, K. & CIMERMAN, F. (1983): Microborings in foraminiferal tests: an ecological and paleoecological cross-reference.– Rapports et Proces-Verbaux des Reunions Commission Internationale pour l’Exploration Scientifique de la Mer Méditerranée Monaco, 28/3, 245–246.
CHAZOTTES, V., LE CAMPION-ALSUMARD, T. & PEYROT-CLAUSADE, M. (1995): Bioerosion rates on coral reefs: interactions between macroborers, microborers, and grazers (Moorea, French Polynesia).– Palaeogeography, Palaeoclimatology, Palaeoecology, 113, 189–198. doi: 10.1016/0031-0182(95)00043-L
CHAZOTTES, V., CABIOCH, G., GOLUBIC, S. & RADTKE, G. (2009): Bathymetric zonation of modern microborers in dead coral substrates from New Caledonia – Implications for palaeodepth reconstructions in Holocene corals.– Palaeogeography, Palaeoclimatology, Palaeoecology, 80, 456–468. doi: 10.1016/j.palaeo.2009.06.033
CLEMENTS, K.D., GERMAN, D.P., PICHE, J., TRIBOLLET, A. & CHOAT, J.H. (2016): Integrating ecological roles and trophic diversification on coral reefs: multiple lines of evidence identify parrotfishes as microphages. The Linnean Society of London.– Biological Journal of the Linnean Society, 120, 729–751. doi: 10.1111/bij.12914
COURADEAU, E., ROUSH, D., SCOTT GUIDA, B. & GARCIA-PICHEL, F. (2017): Diversity and mineral substrate preference in endolithic microbial communities from marine intertidal outcrops (Isla de Mona, Puerto Rico).– Biogeosciences, 14, 311–324. doi: 10.5194/bg-2016-254
CRIMES, T.P. & HARPER, J.C. (eds.)(1970): Trace Fossils.– Seel House Press, Liverpool, 547 p.
DIELS, L. (1914): Die Algenvegetation der Südtiroler Dolomitriffe.– Berichte der Deutschen botanischen Gesellschaft, 32, 507–531.
ECKBLAD, F-E. & KRISTIANSEN, G. (1990): Ostracoblabe implexa, a taxonomic reappraisal.– Mycological Research, 94, 706–708. doi: 10.1016/S0953-7562(09)80673-4
ERCEGOVIĆ, A. (1925): Litofitska vegetacija vapnenaca i dolomita u Hrvatskoj (La vegetation lithophytes sur les calcaires et les Dolomites en Croatie).– Acta Botanica Instituti Botanici Regalis Universitatis Zagrebiensis, 1, 64–114.
ERCEGOVIĆ, A. (1932): Ekološke i sociološke studije o litofitskim cijanoficejama sa jugoslavenske obale Jadrana (Études écologieques et sociologiques des cyanophycées lithophytes de la côte yougoslave del’Adriatique).– Bulletin international de l’Academie Yougoslavie des sciences at des arts, 244, 129–220.
FALKOWSKI, P.G., KATZ, M.E., KNOLL, A.H., QUIGG, A., RAVEN, J.A., SCHOFIELD, O. & TAYLOR, F.J.R. (2004): The Evolution of Modern Eukaryotic Phytoplankton.– Science, 305, 354–360. doi: 10.1126/science.1095964
FÄRBER, C., WISSHAK, M., PYKO, I., BELLOU, N. & FREIWALD, A. (2015): Effects of water depth, seasonal exposure, and substrate orientation on microbial bioerosion in the Ionian Sea (Eastern Mediterranean).– PLoS ONE, 10/4, e0126495. doi: 10.1371/journal.pone.0126495
FINE, M. & LOYA, Y. (2002): Endolithic algae: an alternative source of photoassimilates during coral bleaching.– Proceedings of the Royal Society, London, 269,1205–1210. doi: 10.1098/rspb.2002.1983
FRÉMY, P. (1930): Les Myxophycées de l´Afrique équatoriale francaise.– Archives de Botanique, 2, 1–508.
FRÉMY, P. (1934): Cyanophyceées des cotes d’Europe.– Memoires de la Societe Nationale des Sciences Naturelles et Mathematiques De Cherbourg, 41, 1–234.
FREMY, P. (1945): Contribution à la physiologie des thallophytes marins perforant et cariant, des roches calcaires et des coquilles.– Annales de l'Institut océanographique, 22, 107–144.
FREY, R.W. (1975): The Study of Trace Fossils.– Springer-Verlag, Heidelberg.
FRIEDMANN, E.I. (1971): Light and scanning electron microscopy of the endolithic desert algal habitat.– Phycologia, 10, 411–428.
GARCIA-PICHEL, F., RAMIREZ-REINAT, E. & GAO, Q. (2010): Microbial excavation of solid carbonates powered by P-type ATPase-mediated transcellular Ca2+ transport.– Proceedings of the National Academy of Sciences USA, 107, 21749–21754. doi: 10.1073/pnas.1011884108
GARRAFFONI, A. R. S. & FREITAS, A.V.C. (2017): Photos belong in the taxonomic Code.- Science, 355, 6327. doi: 10.1126/science.aam7686
GERDES, G., CLAES, M., DUNAJTSCHIK-PIEWAK, K., RIEGE, H., KRUMBEIN, W. & REINECK, H.-E. (1993): Contribution of microbial mats to sedimentary surface structures.–Facies, 29, 61–74. doi: 10.1007/BF02536918
GLAUB, I. (1994): Mikrobohrspuren in ausgewählten Ablagerungsräumen der europäischen Jura und der Unterkreide (Klassifikation und Palökologie).– Courier Forschungs Institut Senckenberg, 174, 292 p.
GLAUB, I., GOLUBIC, S., GEKTIDIS, M., RADTKE, G. & VOGEL, K. (2007): Microborings and microbial endoliths: Geological Implications.– In: MILLER, W. (ed.): Trace Fossils: Concepts, Problems, Prospects. Elsevier, Amsterdam, 368–381. doi: 10.1016/B978-044452949-7/50147-9
GLEASON, F.H., GADD, G.M., PITT, J.I. & LARKUM, A.W.D. (2017): The roles of endolithic fungi in bioerosion and disease in marine ecosystems. I. General concepts. Mycology. 1–11. (Published online). II. Potential facultatively parasitic anamorphic ascomycetes can cause disease in corals a nd mollu scs.– Mycolog y, 8/3, 216 –227. doi: 10.1080/21501203.2017.1352049
GLEASON, F.H., LARKUM, A.W.D., RAVEN, J.A., MANOHAR, C.S. & LILJE, O. (2019): Ecological implications of recently discovered and poorly studied sources of energy for the growth of true fungi especially in extreme environments.– Fungal Ecology, 39, 380–387. doi: 10.1016/j.funeco.2018.12.011
GOLUBIC, S. (1969): Distribution, taxonomy, and boring patterns of marine endolithic algae.–American Zoologist, 9, 747–751.
GOLUBIC, S. (1990): Shell boring microorganisms.– In: BOUCOT, A. (ed.): The Evolutionary Paleobiology of Behavior and Coevolution. Elsevier, Amsterdam, 347–352.
GOLUBIC, S. & KNOLL, A.H. (1993): Fossil prokaryotes.– In: LIPPS, J.H. (ed.): Fossil Prokaryotes and protists. Blackwell, 51–76.
GOLUBIC, S. & SCHNEIDER, J. (2003): Microbial endoliths as internal biofilms.– In: KRUMBEIN, W.E, DORNIEDEN, T. & VOLKMANN, M. (eds.): Fossil and Recent Biofilms. Kluwer Academic Publishers, Dordtrecht, 249–263.
GOLUBIC, S., BRENT, G. & LE CAMPION, T. (1970): Scanning electron microscopy of endolithic algae and fungi using a multipurpose castingembedding technique.– Lethaia, 3, 203–209.
GOLUBIC, S., PERKINS, R.D. & LUKAS, K.J. (1975): Boring microorganisms and microborings in carbonate substrates.– In: FREY R.W. (ed.): The Study of Trace Fossils. Springer-Verlag, Heidelberg, 229–259.
GOLUBIC, S., FRIEDMANN, I. & SCHNEIDER, J. (1981): The lithobiontic ecological niche, with special reference to microorganisms.– Journal of Sedimentary Petrology, 51, 475–478.
GOLUBIC, S., CAMPBELL, S.E. & SPAETH, C. (1983): Kunsharzausgüsse fossiler Mikroben-Bohrgänge (Resin-casting of fossil microbial borings).– Der Präparator, Bochum, 29, 197–200.
GOLUBIC, S., CAMPBELL, S.E., DROBNE, K., CAMERON, B., BALSAM, W.L., CIMERMAN, F. & DUBOIS, L. (1984a): Microbial endoliths: a benthic overprint in the sedimentary record, and a paleobathymetric cross-reference with foraminifera.– Journal of Paleontology, 58, 351–361.
GOLUBIC, S., HOOK, J.E., SIKES, E. & CURRAY, J. (1984b): Biological communities at the Florida escarpment resemble hydrothermal vent taxa.– Science, 226, 965–967. doi: 10.1126/science.226.4677.965
GOLUBIC, S., RADTKE, G. & LE CAMPION-ALSUMARD, T. (2005): Endolithic fungi in marine ecosystems.– Trends in Microbiology, 13, 229–235. doi: 10.1016/j.tim.2005.03.007
GOLUBIC, S., RADTKE, G. & LE CAMPION-ALSUMARD, T. (2007): Endolithic fungi.– In: GANGULI, B.N. & DESHMUKH, S.K. (eds.): Fungi: Multifaceted Microbes. Anamaya Publishers, New Delhi, 38-48.
GOLUBIC, S., RADTKE, G., CAMPBELL, S.E., LEE S.-J., VOGEL, K. & WISSHAK, M. (2014): The complex fungal microboring trace Saccomorpha stereodiktyon isp. nov. reveals growth strategy of its maker.– Ichnos, 21, 100–110. doi: 10.1080/10420940.2014.888301
GOLUBIC, S., PIETRINI, A.M. & RICCI, S. (2015): Euendolithic activity of the cyanobacterium Chroococcus lithophilus Erc. in biodeterioration of the Pyramid of Caius Cestius, Rome, Italy.– International Biodeterioration and Biodegradation, 100, 7–16. doi: 10.1016/j.ibiod.2015.01.019
GOLUBIC, S., CAMPBELL, S.E., LEE S-J. & RADTKE, G. (2016): Depth distribution and convergent evolution of microboring organisms.– Paläontologische Zeitschrift, 90/2, 315-326. doi: 10.1007/s12542-016-0308-6
GOLUBIC, S., SCHNEIDER, J., LE CAMPION-ALSUMARD, T., CAMPBELL, S.E., HOOK, J.E. & RADTKE, G. (2019): Approaching microbial bioerosion.– Facies, 65, 1–18. doi: 10.1007/s10347-019-0568-1
GRANGE, J.S., RYBARCZYK, H. & TRIBOLLET, A. (2015): The three steps of the carbonate biogenic dissolution process by microborers in coral reefs (New Caledonia).– Environmental Science Pollution Research, 22,13625–13637. doi:10.1007/s11356-014-4069-z
GREEN, J.W., KNOLL, A.H. & SWETT, K. (1988): Microfossils from oolites and pisolites of the upper Proterozoic Eleonore Bay Group, Central East Greenland.– Journal of Paleontology, 62, 835–852. doi: 10.1017/s0022336000030109
GUIDA, B.S. & GARCIA-PICHEL, F. (2016): Extreme cellular adaptations and cell differentiation required by a cyanobacterium for carbonate excavations.– Proceedings of National Academy of Science USA, 113/2, 5712–5717. doi: 10.1073/pnas.1524687113
HAMILTON, W.A. (2003) Microbially influenced corrosion as a model system for the study of metal microbe interactions: a unifying electron transfer hypothesis . – Biofouling , 19/1, 65 –76 . doi: 10.1080/0892701021000041078
HASSENRÜCK, C., JANTZEN, C., FÖRSTERRA, G., HÄUSSERMANN, V. & WILLENZ, P. (2013): Rates of apical septal extension of Desmophyllum dianthus: e ffect of a ssociation with endolithic photo-autotrophs.– Marine Biology, 160, 2919–2927. doi.: 10.1007/ s00227-013-2281
HÖHNK, W. (1969): Űber den pilzlichen Befall kalkiger Hartteile von Meerestieren.– Deutsche Wissenschaftliche Komission für Meeresforschung, Hamburg, 20/2, 129–140.
HOFMANN, K. (1996) Die mikro-endolithischen Spurenfossilien der borealen Oberkreide Nordwest-Europas.– Geologisches Jahrbuch A, 136, 1-153.
HOOK, J.E. (1991): Microborings from the deep Atlantic (Bermuda Pedestal; Blake Plateau) and Gulf of Mexico (Florida Escarpment): Borers and the ecological and diagenetic fate of the microborings.– Unpubl. Ph.D. Thesis. Boston University Graduate School, 207 p.
HOOK, J.E. & GOLUBIC, S. (1988): Mussel periostracum from deep-sea redox communities as a microbial habitat: the scalloping periostracum borer.– Pubblicazioni della Stazione Zoologica di Napoli I: Marine Ecology, 9, 347–364. doi: 10.1111/j.1439-0485.1988.tb00212.x
HOOK, J.E. & GOLUBIC, S. (1990): Mussel periostracum from deep-sea redox communities as a microbial habitat 2: Pit borers.– Pubblicazioni della Stazione Zoologica di Napoli I: Marine Ecology, 11, 239–254. doi: 10.1111/j.1439-0485.1990.tb00242.x
HOOK, J.E. & GOLUBIC, S. (1992): Mussel periostracum from deep-sea redox communities as a microbial habitat 3: Secondary inhabitants.– Pubblicazioni della Stazione Zoologica di Napoli I: Marine Ecology, 13, 119–131. doi: 10.1111/j.1439-0485.1992.tb00344.x
HOOK, J.E. & GOLUBIC, S. (1993): Microbial shell destruction in deep-sea mussels, Florida Escarpment.– Pubblicazioni della Stazione Zoologica di Napoli I: Marine Ecology, 14, 81–89. doi: 10.1111/j.1439-0485.1993.tb00366.x
HOOK, J.E., GOLUBIC, S. & MILLIMAN, J.D. (1984): Micritic cement in microborings is not necessarily a shallow-water indicator.– Journal of Sedimentary Petrology, 54, 425–431. doi: 10.1306/212F8431-2B24-11D7-8648000102C1865D
INTERNATIONAL COMMISSION ON ZOOLOGICAL NOMENCLATURE (ICZN)(1999): International Code of Zoological Nomenclature. Fourth edition.– International Trust for Zoological Nomenclature, London, 306 p. doi: 10.5962/bhl.title.50608
JAVAUX, E.J. & KNOLL, A.H. (2016): Micropaleontology of the lower Mesoproterozoic Roper Group, Australia, and implications for early eukaryotic evolution.– Journal of Paleontology, 91/2, 99–229. doi: 10.1017/jpa.2016.124
KAZMIERCZAK, J. & GOLUBIC, S. (1976): Oldest organic remains of boring algae from Polish Upper Silurian.– Nature, 261, 404–406.
KNOLL, A.H., GREEN, J.W., GOLUBIC, S. & SWETT, K. (1986): Peritidal assemblages from the Late Proterozoic Limestone-Dolomite Series, central East Greenland.– Geological Society of America, Annual Meeting 1986, Abstracts and Program, 17, 631.
KNOLL, A.H. & GOLUBIC, S. (1992): Proterozoic and living cyanobacteria.– In: SCHIDLOWSKI M., GOLUBIC, S., KIMBERLEY, M.M, MCKIRDY, D.M & TRUDINGER, P.A. (eds.): Early Organic Evolution, Implications for Mineral and Energy Resources. Springer-Verlag, Berlin, 450–462.
KOBAYASHI, I. & SAMATA, T. (2006): Bivalve shell structure and organic matrix.– Materials Science and Engineering, 26/4, 692–698. doi.: 10.1016/j.msec.2005.09.101
KOHLMEYER, J. (1969): The Role of Marine Fungi in the Penetration of Calcareous Substances.– American Zoologist, 9, 741–746.
KOŁODZIEJ, B., GOLUBIC, S., BUCUR, I.I., RADTKE, G. & TRIBOLLET, A. (2012): Early Cretaceous record of microboring organisms in skeletons of growing corals.– Lethaia, 45, 34–45. doi: 10.1111/j.1502-3931.2011.00291.x
KRAUSE, S., LIEBETRAU, V., NEHRKE, G., DAMM, T., BÜSSE, S., LEIPE, T., VOGTS, A., GORB, S.N. & EISENHAUER, A. (2019): Endolithic algae affect modern coral carbonate morphology and chemistry.– Frontiers of Earth Science, 7, 304. doi: 10.3389/feart.2019.00304
KRUMBEIN, W.E. (2010): Gunflint Chert microbiota revisited – neither stromatolites, nor Cyanobacteria.– In: SECKBACH, J. & OREN, A. (eds.): Microbial Mats. Cellular Origin, Life in Extreme Habitats and Astrobiology, vol 14. Springer, Dordrecht. doi: 10.1007/978-90-481-3799-2_4
KRUMBEIN, W.E., PATERSON, D.M. & ZAVARZIN, G.A. (eds)(2003): Fossil and Recent Biofilms: A Natural History of Life on Earth.– Kluwer Academic Publishers, Dordrecht. doi: 10.1007/978-94-017-0193-8
KÜHL, M. & REVSBECH, N.P. (2001): Biogeochemical sensors for boundary layer studies.– In: BOUDREAU, B.P. & JØRGENSEN, B.B (eds.): The Benthic Boundary Layer, 189–210. doi: 10.1093/oso/9780195118810.003.0008
KÜHL, M., FENCHEL, T. & KAZMIERCZAK, J. (2003): Growth, structure and calcification potential of an artificial cyanobacterial mat.– In: KRUMBEIN, W.E., PATERSON, D.M. & ZAVARZIN, G.A. (eds) (2003): Fossil and Recent Biofilms: A Natural History of Life on Earth,. Kluwer Academic Publishers, Dordrecht 77–102. doi: 10.1007/978-94-017-0193-8_5
LE CAMPION-ALSUMARD, T. (1969): Contribution sur l’étude des cyanophycées lithophytes des étages supralittoral et médiolittoral (Région de Marseille).– Tethys, 1, 119–171.
LE CAMPION-ALSUMARD, T., CAMPBELL, S.E. & GOLUBIC, S. (1982): Endoliths and the depth of the photic zone; discussion.– Journal of Sedimentary Petrology, 52, 1333–1334. doi: 10.1306/212F8134-2B24-11D7-8648000102C1865D
LE CAMPION-ALSUMARD, T., GOLUBIC, S. & HUTCHINGS, P. (1995a): Microbial endoliths in skeletons of live and dead corals: Porites lobata (Moorea, French Polynesia).– Marine Ecology Progress Series, 117, 149–157. doi: 10.3354/meps117149
LE CAMPION-ALSUMARD, T., GOLUBIC, S. & PRIESS, K. (1995b): Fungi in corals: symbiosis or disease? Interaction between polyps and fungi causes pearl-like skeleton biomineralization.– Marine Ecology Progress Series, 117, 137–147. doi: 10.3354/meps117137
LORON, C.C., FRANCOIS, C., RAINBIRD, R.H., TURNER, E.C., BORENSZTAIN, S. & JAVAUX, E.J. (2019a): Early fungi from the Proterozoic era in Arctic Canada.– Nature, 570, 232–235. doi: 10.1038/s41586-019-1217-0
LORON, C.C, RAINBIRD, R.H., TURNER, E.C., WILDER GREENMAN, J. & JAVAUX, E.J. (2019b): Organic-walled microfossils from the late Mesoproterozoic to early Neoproterozoic lower Shaler Supergroup (Arctic Canada): Diversity and biostratigraphic significance.– Precambrian Research, 321, 349–374. doi: 10.1016/j.precamres.2018.12.024
LUKAS, K.J. (1974): Two species of the chlorophyte genus Ostreobium from skeleton of Atlantic and Caribbean reef corals.– Journal of Phycology, 10, 331–336. doi: 10.1111/j.1529-8817.1974.tb02722.x
LUKAS, K.J. (1978): Depth distribution and form among common microboring algae from the Florida continental shelf.– Geological Society of America. Annual Meeting 1978, Abstracts and Program, 10, 448.
MAO-CHE, L., LE CAMPION-ALSUMARD, T., BOURY-ESNAULT, N., PAYRI, C., GOLUBIC, S. & BEZAC, C. (1996): Biodegradation of shells of the black pearl oyster Pinctada margaritifera var. cumingii, by microborers and sponges of French Polynesia.– Marine Biology, 126, 509–519. doi: 10.1007/BF00354633
MARIN, F. & LUQUET, G. (2004): Molluscan shell proteins.– Comptes Rendus Palevol, 3, 469–492. doi : 10.1016/j.crpv.2004.07.009
MARIN, F., AMONS, R., GUICHARD, N., STIGTER, M., HECKER, A., LUQUET, G., LAYROLLE, P., ALCARAZ, G., RIONDET, C. & WESTBROEK, P. (2005): Caspartin and Calprismin, two proteins of the shell calcitic prisme of the Mediterranean fan mussel Pinna nobilis.– Journal of Biological Chemistry, 280/40, 33895–33908. doi: 10.1074/jbc.M506526200
MARIN, F., LUQUET, G., MARIE, B. & MEDAKOVIC, D. (2007): Molluscan shell proteins: primary structure, origin, and evolution.– Current Topics in Developmental Biology, 80, 209–276. doi: 10.1016/S0070-2153(07)80006-8
MASSÉ, A, TRIBOLLET, A., MEZIANE, T., BOURGUET‐KONDRACKI, M.L., YÉPRÉMIAN, C., SÈVE, C., THINEY, N., LONGEON, A., COUTÉ, A. & DOMART‐COULON, I. (2020): Functional diversity of microboring Ostreobium algae isolated from corals.– Environmental Microbiology,
22/1, 4825–4846. doi.: 10.1111/1462-2920.15256
MAY, J.A. & PERKINS, R.D. (1979): Endolithic infestation of carbonate substrates below the sediment-water interface.– Journal of Sedimentary Petrology, 49, 357–378. doi: 10.1306/212F7748-2B24-11D7-8648000102C1865D
MEYER, N., WISSHAK, M. & FREIWALD, A. (2020): Ichnodiversity and bathymetric range of microbioerosion traces in polar barnacles of Svalbard.– Polar Research, 39. doi: 10.33265/polar.v39.3766
MILLER III, W. (2007a): Complex Trace Fossils.– In: MILLER III, W. (ed.): Trace Fossils: Concepts, Problems, Prospects,. Elsevier, Amsterdam 458–465. doi: 10.1016/B978-044452949-7/50153-4
MILLER III, W. (ed.)(2007b): Trace Fossils: Concepts, Problems, Prospects.– Elsevier, Amsterdam, 632 p.
MIURA, A. (1961): A new species of Porphyra and its Conchocelis-phase in nature.– Journal of the Tokyo University Fisheries, 47, 305–311.
MURRAY, J.W. (1973): Distribution and Ecology of Living Benthic Foraminiferids.– Heinemann, London,. 274 p.
MURRAY, J.W. (1991): Ecology and Palaeoecology of Benthic Foraminifera.– Logman Scientific & Technical, London, 408 p.
NADSON, G.A. (1900): Die perforierenden (kalkbohrenden) Algen und ihre Bedeutung in der Natur.– Scripta Botanica Horti Universitatis Petropolis, 18, 1–40.
NADSON, G.A. (1927): Les algues perforantes de la Mer Noire.– Comptes rendus l’Académie des Science, 184, 896.
NEUMANN, C. (1966): Observations on coastal erosion in Bermuda and measurements of the boring rate of the sponge, Cliona lampa.– Limnology and Oceanography, 11, 92–108.
PALINSKA, K.A., ABED, R.M.M., VOGT, J.C., RADTKE, G. & GOLUBIC, S. (2017): Microbial endoliths Adriatic limestone coast: Morphological vs. molecular diversity.– Geomicrobiology, 34, 903–915. doi: 10.1080/01490451.2017.1297512
PAULL, C.K., HECKER, B., COMMEAU, R., FREEMAN-LYNDE, R.P., NEUMANN, C., CORSO,W.P., GOLUBIC, S., HOOK, J.E., SIKES, E. & CURRAY, J. (1984): Biological communities at the Florida escarpment resemble hydrothermal vent taxa.– Science, 226, 965–967. doi: 10.1126/science.226.4677.965
PERNICE, M., RAINA, J-B., RÄDECKER, N., CÁRDENAS, A., POGOREUTZ, C. & VOOLSTRA, C.R. (2020): Down to the bone: the role of overlooked endolithic microbiomes in reef coral health.– International society for microbial ecology journal, 14/2, 325–334. doi: 10.1038/s41396-019-0548-z
PICA, D., TRIBOLLET, A., GOLUBIC, S., BO, M., GIOIA DI CAMILLO, C., BAVESTRELLO, G. & PUCE, S. (2016): Microboring organisms in living stylasterid corals (Cnidaria, Hydrozoa).– Marine Biology Research, 12/6, 573–582. doi: 10.1080/17451000.2016.1169298
PLOTNICK, R.E. (2012): Behavioral biology of trace fossils.– Paleobiology, 38/3, 459–473. doi: 10.1666/11008.1
PORTER, C.L. & ZEBROWSKI, G. (1937): Lime-loving molds from Australian sands.– Mycologia, 29, 252–257.
POULICEK, M. & JASPAR VERSALI, M.F. (1984): Biodegradation de la trame organique des coquilles de mollusques en milieu marin: action des microorganismes endoliths.– Société Royale des Sciences de Liège, Bulletin, 53, 114–126.
PRICE, T.J., THAYER, G.W., LACROIX, M.W. & MONTGOMERY, G.P. (1976): The organic content of shells and soft tissues of selected estuarine gastropods and pelecypods.– Proceedings of National Shellfish Association, 65, 26–31.
PRIESS, K., LE CAMPION-ALSUMARD, T., GOLUBIC, S., GADEL, F. & TOMASSIN, B.A. (2000): Fungi in corals: black bands and density-banding of Porites lutea and P. lobata skeleton.– Marine Biology, 136, 19–27. doi: 10.1007/s002270050003
RADTKE, G. (1991): Die mikroendolitischen Spurenfossilien im Alt-Tertiär West-Europas und ihre palökologische Bedeutung.– Courier Forschungsinstitut Senckenberg, 138, 1–185.
RADTKE, G. (1992): Microendolithic trace fossils of Paris basin as facies indicators.– Proceeding 7th International Coral Reef Symposium, 1, 419–426.
RADTKE, G. (1993): The distribution of microborings in molluscan shells from Recent reef environments at Lee Stocking Island, Bahamas.– Facies, 29, 81–92. doi: 10.1007/BF02536921
RADTKE, G. & GOLUBIC, S. (2005): Microborings in mollusk shells, Bay of Safaga, Egypt: Morphometry and ichnology.– Facies, 51, 118–134. doi: 10.1007/s10347-005-0016-02
RADTKE, G. & GOLUBIC, S. (2011): Microbial euendolithic assemblages and microborings in intertidal and shallow marine habitats: insights in cyanobacterial speciation.– In: REITNER, J., QUERIC, W. & ARP, G. (eds.): Advances in Stromatolite Geobiology – Lecture Notes in Earth Sciences, 131, 213–244. Springer, Berlin. doi: 10.1007/978-3- 642-10415-2_16
RADTKE, G., LE CAMPION-ALSUMARD, T. & GOLUBIC, S. (1996): Microbial assemblages of the bioerosional "notch" along tropical limestone coasts.– Algological Studies, 83, 469–482. doi: 10.1127/algol_stud/83/1996/469
RADTKE, G., HOFMANN, K. & GOLUBIC, S. (1997): A bibliographic overview of micro- and macroscopic bioerosion.– Courier Forschungsinstitut Senckenberg, 201, 307–340.
RADTKE, G., GLAUB, I., VOGEL, K. & GOLUBIC, S. (2010): A new dichotomous microboring: Abeliella bellafurca isp. nov., distribution, variability and biological origin.– Ichnos, 17, 25–33. doi: 10.1080/10420940903358628
RADTKE, G., SCHÄFER, P., BLASCHKE, H. & GOLUBIC, S. (2011): Microborings from shallow marine habitats on both sides of the Panama Isthmus.– Annale des Naturhistorischen Museums, Wien, Series A, 113, 245–265.
RADTKE, G., CAMPBELL, S.E. & GOLUBIC, S. (2016): Conchocelichnus seilacheri igen. and isp. nov., a complex microboring trace of Bangialean rhodophytes.– Ichnos, 23/3–4, 228–236. doi.: 10.1080/10420940.2016.1199428
REID, R.P., FOSTER, J.S., RADTKE, G. & GOLUBIC, S. (2011): Modern marinestromatolites of Little Darby Island, Exuma Archipelago, Bahamas: Environmental setting, accretion mechanisms and role of euendoliths. In: REITNER, J., QUERIC, W. & ARP, G. (eds.): Advances in Stromatolite Geobiology – Lecture Notes in Earth Sciences, 131, 77-89. Springer, Berlin. doi: 10.1007/978-3-642-10415-2_4
REYSENBACH, A-L. & CADY, S.L. (2001): Microbiology of ancient and modern hydrothermal systems.– Trends in Microbiology, 9, 79–86. doi: 10.1016/s0966-842x(00)01921-1
RIOULT, M. & DANGEARD, L. (1967): Importance des cryptogames perforantes marines en geologie.– Le Botaniste, 50, 389–413.
ROUSH, L. & GARCIA-PICHEL, F. (2020): Succession and colonization dynamics of endolithic phototrophs within intertidal carbonates.–Microorganisms, 2020, 8/2, 214. doi: 10.3390/microorganisms8020214
SAMATA, T., HAYASHI, N., KONO, M., HASEGAWA, K., HORITA, C. & AKERA, S. (1999): A new matrix protein family related to the nacreous layer formation of Pinctada fucata.–Federation of European Biochemical Society Letters, 462, 225–229. doi: 10.1016/s0014-5793(99)01387-3
SANCHEZ-BARACALDO, P., RAVEN, J., PISANI, D. & KNOLL, A. (2017): Early photosynthetic eukaryotes inhabited low salinity habitats.– Proceedings of the National Academy of Sciences USA, 114, E7737-E7745. doi: 10.1073/pnas.1620089114
SARASHINA, I. & ENDO, K. (2001): The complete primary structure of Molluscan Shell Protein 1 (MSP-1), an acidic glycoprotein in the shell matrix of the scallop Patinopecten yessoensis.– Marine Biotechnology, 3, 362–369. doi: 10.1007/s10126-001-0013-6
SCHAUER, R., BIENHOLD, C., RAMETTE, A. & HARDER, J. (2010): Bacterial diversity and biogeography in deep-sea surface sediments of the South Atlantic Ocean.– The International Society for Microbial Ecology Journal, 4, 159–170. doi: 10.1038/ismej.2009.106
SCHMIDT, M. (1990): Mikrobohrspuren in Fossilien der triassischen Hallstätter Kalke und ihre bathymetrische Bedeutung.– Facies, 23, 109–119. doi: 10.1007/BF02536709
SCHNEIDER J. (1976): Biological and inorganic factors in the destruction of limestone coasts.– Contributions to Sedimentology, 6, 1–112.
SCHNEIDER, J. & LE CAMPION-ALSUMARD, T. (1999): Construction and destruction of carbonates by marine and freshwater cyanobacteria.– European Journal of Phycology, 34, 417–426. doi: 10.1080/09670269910001736472
SCHNEIDER, J. & TORUNSKI, H. (1983): Biokarst on limestone coasts, morphogenesis and sediment production.– Marine Ecology, 4, 45–63.
SCHÖNBERG, C.H.L. (2008): A history of sponge erosion: from past myths and hypotheses to recent approaches.– In: WISSHAK, M. & TAPANILA, L. (eds.): Current Developments in Bioerosion, 165–202. Springer- Verlag, New York. doi: 10.1007/978-3-540-77598-0_9
SCHÖNBERG, C.L, GLEASON, F.H., MEYER, N. & WISSHAK, M. (2019): Close encounters in the substrate: when macroborers meet microborers.– Facies 65,25. doi: 10.1007/s10347-019-0567-2
SCHOPF, J.W. & KLEIN C. (eds.)(1992): The Proterozoic Biosphere: A Multidisciplinary study.– Cambridge University Press, 1374 p. doi: 10.1017/CBO9780511601064
SEILACHER, A. (1967): Fossil behavior.– Scientific American, 217, 72–80.
SEILACHER, A. (2007): Trace Fossil Analysis.– Springer-Verlag, New York, 226 p.
SMITH, C.R. & DEMOUPOLOS, A.W.J. (2003): Ecology of the Pacific Ocean floor.– In: TYLER, P.A. (ed.): Ecosystems of the World, 179–218. Elsevier, Amsterdam
SONG, X., LIU, Z., WANG, L. & & SONG L. (2019): Recent advances of shell matrix proteins and cellular orchestration in marine Molluscan shell Biomineralization.– Frontiers in Marine Science, 10. doi: 10.3389/fmars.2019.00041
SPERO, H.J. (1988): Ultrastructural examination of chamber morphogenesis and bomineralization in the planktonic foraminifer Orbulina universa.– Marine Biology, 99, 9–20. doi: 10.1007/BF00644972
SWINCHATT, J.P. (1969): Algal boring: A possible depth indicator in carbonate rocks and sediments.– Geological Society of America, Bulletin, 80, 1391–1396.
TRIBOLLET, A. (2008a): Dissolution of dead corals by euendolithic microorganisms across the northern Great Barrier Reef (Australia).– Microbial Ecology, 55/4, 569–580. doi: 10.1007/s00248-007-9302-6
TRIBOLLET, A. (2008b): The boring microflora in modern coral reef ecosystems: a review of its roles.– In: WISSHAK, M. & TAPANILA, L. (eds.): Current Developments in Bioerosion. Springer-Verlag, New York, 67–94. doi: 10.1007/978-3-540-77598-0_4
TRIBOLLET, A. & GOLUBIC, S. (2005): Cross-shelf differences in the pattern and pace of bioerosion of experimental carbonate substrates exposed for 3 years on the northern Great Barrier Reef, Australia.– Coral Reefs, 24, 422–434. doi: 10.1007/s00338-005-0003-7
TRIBOLLET, A., GOLUBIC, S., RADTKE, G. & REITNER, J. (2011a): On microbiocorrosion.– In: REITNER, J., QUERIC, W. & ARP, G. (eds.): Advances in Stromatolite Geobiology – Lecture Notes in Earth Sciences, 131, 265-276. Springer, Berlin.
TRIBOLLET, A., RADTKE, G. & GOLUBIC, S. (2011b): Bioerosion.– In: REITNER, J. & THIEL, V. (eds.): Encyclopedia of Geobiology. Lecture Notes in Earth Sciences Series, 117–134. Springer-Verlag, New York. doi: 10.1007/978-1-4020-9212-1_25
TRIBOLLET, A., CHAUVIN, A. & CUET, P. (2019): Carbonate dissolution by reef microbial borers: a biogeochemical process producing alkalinity under different pCO2 conditions.– Facies, 65, 9. doi: 10.1007/s10347-018-0548-x
TSENG, C.K. & CHANG, T.J. (1955): Studies on Porphyra III, sexual reproduction of Porphyra.– Acta Botanica Sinica, 4, 153–166.
UCHMAN, A. (2007): Deep-sea ichnology: Development of major concepts.– In: MILLER III, W. (ed.): Trace Fossils: Concepts, Problems, Prospects. Elsevier, Amsterdam, 248-267. doi: 10.1080/09853111.2015.1065306
VALLIAPPAN, K., SUN, W. & LI., Z. (2014): Marine actinobacteria associated with marine organisms and their potentials in producing pharmaceutical natural products.– Applied Microbiology and Biotechnoogy, 98, 7365–7377. doi: 10.1007/s00253-014-5954-6
VALLON, L.H., RINDSBERG, A.K. & BROMLEY, R.G. (2016): An updated classification of animal behavior preserved in substrates.– Geodinamica Acta, 28, 5–20. doi: 10.1080/09853111.2015.1065306
VOGEL, K. & BRETT, C.E. (2009): Record of microendoliths in different facies of the Upper Ordovician in the Cincinnati Arch region USA: The early history of light-related microendolithic zonation.– Palaeogeography, Palaeoclimatology, Palaeoecology, 281, 1–24. doi: 10.1016/j.palaeo.2009.06.032
VOGEL, K., GOLUBIC, S. & BRETT, C.E. (1987): Endolith associations and their relation to facies distribution in the Middle Devonian of New York State, USA.– Lethaia, 20, 263–290. doi: 10.1111/j.1502-3931.1987.tb02047.x
VOGEL, K., GEKTIDIS, M., GOLUBIC, S., KIENE, W.E. & RADTKE, G. (2000): Experimental studies on microbial bioerosion at Lee Stoking Island, Bahamas and One Tree Island, Great Barrier Reef, Australia: implications for paleoecological reconstructions.– Lethaia, 33, 190–204. doi: 10.1080/00241160025100053
WALKER, M., JOHNSEN, S., RASMUSSEN, S.O., POPP, T., STEFFENSEN, J.-P., GIBBARD, P., HOEK, W., LOWE, J., ANDREWS, J., BJÖRK, S., CWYNAR, L.C., HUGHEN, K., KERSHAW, P., KROMER, B., LITT, T., LOWE, D.J., NAKAGAWA, T., NEWNHAM, R. & SCHWANDER, J. (2009): Formal definition and dating of the GSSP (Global Stratotype Section and Point) for the base of the Holocene using the Greenland NGRIP ice core, and selected auxiliary records.- Journal of Quaternary Science 24, 3–17. doi: 10.1002/jqs.1227
WIERZCHOS, J., CASERO, M.C., ARTIEDA, O. & ASCASO, C. (2018): Endolithic microbial habitats as refuges for life in polyextreme environment of the Atakama Desert.– Current Opinion in Microbiology, 43, 124–139. doi: 10.1016/j.mib.2018.01.003
WISSHAK, M. (2006): High-latitude bioerosion: The Kosterfjord Experiment.– Lecture Notes in Earth Sciences, 109, 1–202. Springer, Heidelberg. doi: 10.1007/978-3-540-36849-6
WISSHAK, M. (2008): Two new dwarf Entobia ichnospecies in a diverse aphotic ichnocoenosis (Pleistocene / Rhodes, Greece).– In: WISSHAK, M. & TAPANILA, L. (eds.): Current Developments in Bioerosion. Springer-Verlag, Heidelberg, 213–233. doi: 10.1007/978-3-540-77598-0_11
WISSHAK, M. (2012): Microbioerosion. In: BROMLEY, D. & KNAUST, D. (eds.): Trace Fossils as Indicators of Sedimentary Environments,. Developments in Sedimentology, 64, 213–243. Elsevier, Amsterdam. doi: 10.1016/B978-0-444-53813-0.00008-3
WISSHAK, M. (2019): Taming an ichnotaxonomical Pandora’s box: revision dendritic and rosette microborings (ichnofamily: Dendrinidae).– European Journal of Taxonomy, 390, 1–99. doi: 10.5852/ejt.2017.390
WISSHAK, M. & NEUMANN, C. (2018): Large dendrinids meet giant clam: the bioerosion trace fossil Neodendrina carnelia igen. et isp. n. in a Tridacna shell from Pleistocene-Holocene coral reef deposits, Red Sea, Egypt.– Fossil Record, 21, 1–9. doi: 10.5194/fr-21-1-2018
WISSHAK, M. & PORTER, D. (2006): The new ichnogenus Flagrichnus – A paleoenvironmental indicator for cold-water settings?.– Ichnos, 13/3, 135–145. doi: 10.1080/10420940600851255
WISSHAK, M. & RÜGGEBERG, A. (2006): Colonisation and bioerosion of experimental substrates by benthic foraminiferans from euphotic to aphotic depths (Kosterfjord, SW Sweden).– Facies, 52, 1–17. doi: 10.1007/s10347-005-0033-1
WISSHAK, M. & TAPANILA, L. (eds.)(2008): Current Developments in Bioerosion.– Springer-Verlag, Berlin, 516 p. doi: 10.1007/978-3-540-77598-0_11
WISSHAK, M., GEKTIDIS, M., FREIWALD, A. & LUNDÄLV, T. (2005): Bioerosion along a Bathymetric gradient in a cold-temperate setting (Kosterfjord, SW Sweden): an experimental study.– Facies, 51, 93–117. doi: 10.1007/s10347-005-0009-1
WISSHAK, M., TRIBOLLET, A., GOLUBIC, S., JAKOBSEN, J. & FREIWALD, A. (2011): Temperate bioerosion: Ichnodiversity and biodiversity from intertidal to bathyal depths (Azores).– Geobiology, 9, 492–520. doi: 10.1111/j.1472-4669.2011.00299.x
WISSHAK, M., ALEXANDRAKIS, E. & HOPPENRATH, M. (2014a): The diatom attachment scar Ophthalmichnus lyolithon igen. et isp. n.– Ichnos, 21, 111–118. doi: 10.1080/10420940.2014.907572
WISSHAK, M., SCHÖNBERG, C.H.L., FORM, A. & FREIWALD, A. (2014b): Sponge bioerosion accelerated by ocean acidification across species and latitudes?.– Helgoland Marine Research, 68, 253–262. doi: 10.1007/s10152-014-0385-4
WISSHAK, M., MEYER, N., RADTKE, G. & GOLUBIC, S. (2018): Saccomorpha guttulata, a new marine fungal microbioerosion trace fossil from cool- to cold-water settings.–Paläontologische Zeitschrift, 92, 3, 525–533. doi: 10.1007/s12542-018-0407-7
WISSHAK, M., KNAUST, D. & BERTLING, M. (2019): Bioerosion ichnotaxa: review and annotated list.– Facies, 65, 24. doi: 10.1007/s10347-019-0561-8
WOESE, C.R., KANDLER, O. & WHEELIS, M.L. (1990): Towards a natural system of organisms: Proposal for the domains Archaea, Bacteria, and Eucarya.– Proceedings of National Academy of Sciences USA, 87, 4576–4579. doi: 10.1073/pnas.87.12.4576
ZEBROWSKI, G. (1936): New genera of Cladochytriaceae.– Annals of the Missouri Botanical Garden, 23, 553–564.
ZEFF, N.L. & PERKINS, R.D. (1979): Microbial alteration of Bahamian deepsea carbonates.– Sedimentology, 26, 175–201. doi: 10.1111/j.1365-3091.1979.tb00350.x
ZHANG, Y. & GOLUBIC, S. (1987): Endolithic microfossils (Cyanophyta) from early Proterozoic stromatolites, Hebei, China.– Acta Micropalaeontologica Sinica, 4, 1–12.
ZHANG, X-G & PRATT, B.R. (2008): Microborings in Early Cambrian phosphatic and phosphatized fossils.– Palaeogeography, Palaeoclimatology, Palaeoecology, 267, 185–195. doi: 10.1016/j.palaeo.2008.06.015