Modeling microfracture geometry to the asses the function of a karst system (Vízfő spring catchment area, Western Mecsek Mountains, Hungary)

Main Article Content

Marton Bauer
Tivadar Tóth M.

Abstract

One of the current objectives of karst research is to understand the spatial dynamics of karstic processes that increase ordecrease pore volume. Although we can construct 3D numerical models, it is a complex, multi-step process. These modellingapproaches combine a dissolution algorithm, a flow and/or transport model and an algorithm to reconstruct thespatial geometry of fracture networks. The paper focuses on the last task, and does not consider the first two problems. We applied the RepSim code, a DFN (discrete fracture network) type fracture geometry modelling software that usesfractal behavior of fracture patterns, for simulations. This method simulates fracture systems at a reservoir scale. The input parameters (length distribution, aperture, orientation and fractal dimension of the fracture midpoints) weredetermined using field measurements and evaluation of digitized images. The primary images were of outcrops fromthe surface and from two caves. The examined area is the karstic block of the Mecsek Mountains in SW Hungary, which is one of the most exploredkarstic regions in that country. There are seven small and one relatively large (Vízfő) catchment areas in the mountains. The large catchment was used as the study area, which lithologically consists of sandstones and limestones,both intensely fractured by subsequent tectonic events. The spatial distribution of cave entrances and dolinas is unevenacross the study area. This phenomenon has not yet been investigated. Here, a relationship is inferred between the original (prekarstic) microfracture network geometry and the spatial distributionof the aforementioned karst forms. The results show that the region can be divided into two zones that fracturedin distinctly different ways. Their fracture network communication features, porosity and permeability differ.Additionally, sub-regions could develop inside the catchment area where dissolution-cementation processes couldhave been differently effective, determining the spatial distribution of the dissolution governed karstic forms (e.g.caves, dolinas).

Downloads

Download data is not yet available.

Article Details

Section
Original Scientific Papers

References

ALLÈGRE, C.J., LE MOUEL, J. L. & PROVOST, A. (1982): Scaling rules in rock fracture and possible implications for earthquake prediction. – Nature, 297: 47-49.

BADA, G., HORVÁTH, F., DÖVÉNYI, P., SZAFFIÁN, P., WINDHOFFER G. & CLOETINGH, S. (2007): Present-day stress field and tectonic inversion in the Pannonian basin. – Global and Planetary Change, 58: 165-180.

BARTON, C.C. & LARSEN, E. (1985): Fractal geometry of two-dimensional fracture networks at Yucca Mountain, Southwestern Nevada. – Fundamentals of Rock Joints: Proceedings of the International Symposium on Fundamentals of Rock Joints, 77-84.

BARTON, C. C. (1995): Fractal analysis of scaling and spatial clustering of fractures –In: BARTON, C. C. & LA POINTE, P. R. (eds.): Fractals in the Earth Sciences. Plenum Press, New York, pp.168.

BAUER, S.& LIEDL, R. (2000): Modelling of karst development considering conduit-matrix exchange flow. Calibration and Reliability in Groundwater Modelling (Proceedings of the ModelCARE 99 Conference held at Zurich, Switzerland, September 1999). – IAHS Publ. no. 265, 2000.

BAUER S., LIEDL, R. & SAUTER, M. (2002): Modelling of karst genesis at the catchment scale influence of spatially variable hydraulic conductivity. – Acta Geologica Polonica, 52: 13–21.

BAUER,, S., LIEDL R. & SAUTER, M. (2003): Modelling of karst aquifer genesis — influence of exchange flow. – Water Resources Research, 39 p.

BENKOVITS, L., CSONTOS, L., MANSY, J.L. & BERGERAT, F. (1997): Folding in the Abaliget road Cut. – Acta Geologica Hungarica, 40 (4): 425-440.

BILLI, A., VALLE, A., BRILLI, M., FACENNA, C. & FUNICIELLO, R. (2007): Fracture controlled fluid circulation and dissolutional weathering in sinkhole-prone carbonate rocks from central Italy. – Journal of Structural Geology, 29: 385-395.

BORGHI, A., RENARD, P. & JENNI, S. (2012): A pseudo-genetic stochastic model to generate karstic networks. – Journal of Hydrology, 414–415: 516–529.

CAMPOS, I., BALANKIN, A., BAUTISTA, O. & RAMÍREZ, G. (2005): Self-affine cracks in a brittle porous material. – Theoretical and Applied Fracture Mechanics, 44/2, 187-191

CHILES, J. & DE MARSILY, G. (1993): Stochastic Models of Fracture Systems and Their Use in Flow and Transport Modeling. – In: BEAR, J., TSANG, C. F. & DE MARSILY, G. (Eds.), Flow and Contaminant Transport in Fractured Rock.
Academic Press, INC: 169-236.

CHOQUETTE, P.W. & PRAY L.C. (1970): Geologic nomenclature and classification of porosity in sedimentary carbonates. – AAPG. Bulletin, 54: 207–250.

CURL, R.L. (1986): Fractal dimensions and geometries of caves. – Mathematical Geology, 18 (8): 765-783.

CZIGÁNY, SZ. & LOVÁSZ, GY. (2006): A mecseki karszt térképezésének újabb eredményei (New results of the mapping on the karstic area of Mecsek Mountain – in Hungarian). – Közlemények a Pécsi Tudományegyetem Földrajzi Intézetének Természetföldrajzi tanszékéről 28: 3-14.

CSONTOS, L., BENKOVITS, L., BERGERAT, F., MANSY, J. L. & WÓRUM, G. (2002): Tertriary deformation history from seismic section study and fault analysis in former European Tethyan margin (The Mecsek-Villány Mountains area, SW Hungary). – Tectonophysics, 357: 81-102.

DE DREUZY, J. R., DAVY, P. & BOUR, O. (2002): Hydraulic properties of two-dimensional random fracture networks following power law distributions of length and aperture. – Water Resources Research, 38/12, 121-129.

DREYBRODT, W. & GABROVSEK, F. (2000): Dynamics of the evolution of a single karst conduit. – In: KLIMCHOUK A.B., FORD D.C., PALMER, A.N. & DREYBRODT, W. (Eds.), Speleogenesis: evolution of karst aquifers, National Speleological Society, USA: 184–193.

DREYBRODT, W., GABROVŠEK, F. & PERNE, M. (2005): Condensation corrosion: a theoretical approach. – Acta Carsologica, 34 (2): 317–348.

FENG, K., CAO, J., HUA, K., PENG, X., CHEN, Y., WANG, Y. & WANG, M.: (2013): Dissolution and its impacts on reservoir formation in moderately to deeply buried strata of mixed siliciclastic and carbonate sediments, northwestern Qaidam Basin, northwest China. – Marine and Petroleum Geology, 39: 124 -137.

FILIPPONI, M., JEANNIN, P. & TACHER, L. (2009): Evidence of inception horizons in karst conduit networks. – Geomorphology, 106: 86–99.

GABROVSEK, F., ROMANOV, D. & DREYBRODT, W. (2004): Early karstification in a dual-fracture aquifer: the role of exchange flow between prominent fractures and a dense net of fissures. – Journal of Hydrology, 299 (1-2): 45–66.

GILA, CS. (2000): Barlangjárat-jelleg vizsgálata vízfestéses eljárással a Nyugat-mecseki karszton - Diploma Thesis Characterization of the Caves in the Western Mecsek by tracing methods-In Hungarian). – University of Szeged Department of Physical Geography and Geoinformatics 1-26.

GUDMUNDSSON, A. (2000): Fracture dimensions, displacements and fluid transport. –Journal of Structural Geology, 22 (9): 1221-1231.

GUDMUNDSSON, A., BERG, S.S., LYSLO, K.B. & SKURTVEIT, E. (2001): Fracture networks and fluid transport in active fault zones. – Journal of Structural Geology, 23 (2-3): 343-353.

JACQUET, O., SIEGEL, P., KLUBERTANZ G. & BENABDERRHAMANE, H. (2004): Stochastic discrete model of karstic networks. – Advances in Water Resources, 27 (7), 751–760.

JAKUCS, L. (1971): A karsztok morfogenetikája (Morphogenetic of karst regions- In Hungarian). – Akadémiai Kiadó, Budapest, 46 p.

KAUFMANN, G. & BRAUN, J. (1999): Karst aquifer evolution in fractured rocks. – Water Resources Research, 35: 3223-3238.

KAUFMANN, G. & BRAUN, J. (2000): Karst aquifer evolution in fractured, porous rocks. – Water Resources Research, 36: 1381-1391.

KAUFMANN, G. (2003a): A model comparison of karst aquifer evolution for different matrix-flow formulations. – Journal of Hydrology, 283 (1-4): 281–289.

KAUFMANN, G. (2003b): Modelling unsaturated flow in an evolving karst aquifer. – Journal of Hydrology, 276 (1-4): 53–70.

KAUFMANN, G. & ROMANOV, D. (2008): Cave development in the Swabian Alb, south-west Germany: A numerical perspective. – Journal of Hydrology, 349: 302– 317.

KAUFMANN, G., ROMANOV, D. & HILLER T. (2010): Modeling three-dimensional karst aquifer evolution using different matrix-flow contributions. – Journal of Hydrology, 388 (3-4): 241–250.

KOLTAI, G., ORSZÁG, J. & TEGZES, Z. (2010): Radontransport mesaurments in Mecsek Mountains. – Karstdevelopment, 1: 18-30.

KONRÁD, GY. & SEBE, K. (2010): Fiatal tektonikai jelenségek új észlelései a Nyugat-Mecsekben és környezetében. (New details of young tectonic phenomena in the Western Mecsek Mts. and their surroundings -in Hungarian) – Földtani Közlöny, 140 (2): 135-163.

KORVIN, G. (1992): Fractal Models in the Earth Sciences. – Elsevier, pp. 396.

LIPMANN, L., KISS, K. & MÓGA, J. (2008): Az Abaliget- Orfűi Karszt karsztos felszínformáinak vizsgálata térinformatikai módszerekkel (Investigation of the karstic phenomenon near Orfű and Abaliget by GIS methods- In Hungarian). – Karsztfejlődés, 13: 151-166.

LOVÁSZ, GY. (1971): Adatok az Abaligeti- karszt geomorfológiai és hidrológiai jellemzéséhez. (Data for the characterization of the hydrology and geomorphology of the Abaliget karst - In Hungarian). – Földrajzi Értesítő, 47 (3): 283-296.

LUN, Z., JIANXIN, L., KONGCHOU, L., ZIFEI, F., HENG, S. & XUBIN, C. (2010): Development and genetic mechanism of complex carbonate reservoir fractures: A case from the Zanarol Oilfield, Kazakhstan. – Petroleum Exploration and Development, 37 (3): 304–309.

MANDELBROT, B. B. (1983): The Fractal Geometry of Nature. – Freeman, New York, pp. 468.

MANDELBROT, B.B. (1985): Self-affine fractal dimension. – Physica Scripta, 32: 257-260.

TÓTH, T. M. (2003): Mészkő területek repedésrendszerének modellezési lehetőségei (Modeling possibilities of limestone areas- In Hungarian). In: Ünnepi tanulmányok Keveiné Bárány Ilona professzor asszony tiszteletére, Szeged pp 447-455

TÓTH, T. M., HOLLÓS, CS., SZŰCS, É. & SCHUBERT, F. (2004): Conceptual fracture network model of the crystalline basement of the Szeghalom Dome (Pannonian Basin, SE Hungary). – Acta Geologica Hungarica, 47 (1): 19-34.

TÓTH, T. M. (2010): Determination of geometric parameters of fracture networks using 1D data. – Journal of Structural Geology, 32 (7): 878–885.

TÓTH, T. M. & VASS, I. (2011): Relationship Between the Geometric Parameters of Rock Fractures, the Size of Percolation Clusters and REV. – Mathematical Geosciences, 43 (1): 75–97.

NIETO-SAMANIEGO, A.F., ALANIZ-ALVAREZ, S.A., TOLSON, G., OLESCHO K., KORVIN, G., XU, S. S. & PEREZ-VENZOR J.A. (2005): Spatial distribution, Scaling and Self similar behavior of Fracture Arrays in the Los Planes Fault Baja, California Sur, Mexico. – Pure and Applied Geophysics, 162: 805-826.

OLSEN, J.E. (1993): Joint pattern development: Effects of subcritical crack growth and mechanical crack interaction. – Journal of Geophysical Research, 98: 12251-12265.

ORTEGA, O. J., MARRETT, R. A. & LAUBACH, S. E. (2006): A scale-independent approach to fracture intensity and average spacing measurement. – AAPG Bulletin, 90/2, 193-208.

OUILLON, G., CASTAING, C. & SORNETTE, D. (1996): Hierarchical geometry of faulting. – Journal of Geophysical Research, 101: 5477-5487.

PALMER, A.N., (1991): Origin and morphology of limestone caves. – Geological Society of America Bulletin, 103: 1–21.

PARDO-IQÚZUIZA E., DOWD, P.A., XU, C. & DURÁN-VALSERO, J.J. (2012): Stochastic simulation of karst conduit networks. – Advances in Water Resources, 35: 141-150.

RENSHAW, C.E. & POLLARD, D.D. (1994): Numerical simulation of fracture set formation: A fracture mechanics model consistent with experimental observations. – Journal of Geophysical Research, 99: 9359-9372.

RILEY, M.S. (2004): An algorithm for generating rock fracture patterns mathematical analysis. – Mathematical Geology, 36 (4): 683-702.

ROMANOV, D., GABROVSEK, F. & DREYBRODT, W. (2004): Modeling the evolution of karst aquifers and speleogenesis. The step from 1-dimensional to 2-dimensional modeling domains. – Speleogenesis and Evolution of Karst Aquifers, 2 (1): 2-28.

RÓNAKI, L. (1970): Vízfő forrás és barlangjának kutatása (Researach of the Vízfő Spring and the cave behind the spring- In Hungary). – Karszt és Barlang, 1: 25-30.

RÓNAKI, L. (2007): A Mecseki Karszton történt víznyomjelzések áttekintése (Overview of the water tracing in the Mecsek Mountain – In Hungarian). – Karsztfejlődés, 13: 91-103.

SEBE, K., CSILLAG, G. & KONRÁD, GY. (2008): The role of neotectonics in fluvial landscape development in the Western Mecsek Mountains and related foreland basins (SE Transdanubia, Hungary). – Geomorphology, 102: 55–67.

SINGURINDY, O. & BERKOWITZ, B. (2005): The role of fractures on coupled dissolution and precipitation patterns in carbonate rocks. – Advances in Water Resources, 28: 507–521.

SZABÓ, P. Z. (1955): A fiatal kéregmozgások geomorfológiai és népgazdasági jelentősége a Déldunántúlon (Geomorphological and economic significance of the young structural deformations in SW Hungaria –In Hungarian). – Dunántúli Tudományos Intézet gyűjteménye IV: 12-26.

SZŐKE, E. & ORSZÁG, J. (2006): A mecseki Rumba-barlang víznyomjelzéses vizsgálata (Research the Rumba cave by tracing methods in the western Mecsek Mts. – In Hungarian). Karst development, 11: 275-286.

TURCOTTE, D.L. (1997): Fractals and chaos in geology and geophysics. – Cambridge University Press, 412 p.

VASS, B. (2012): Vízhozam és hézagtérfogat számítás magaskarszt forrásoknál a Tettye példáján (Well capacity and porosity calculating on the Tettye spring catchment area - In Hungarian). In: BARTA, K., TARNAI, T., (Eds.) A Nyugat- Mecsek Karsztja. Geolitera: 69-75

VASS, I., TÓTH T. M., SZANYI, J. & KOVÁCS, B. (2009): Az aljzati kristályos hátak szerepe az Alföld fluidum áramlási és hőtranszport folyamataiban (The role of the crystallic domes of the basement in the fluid migration and thermotransport processes – In Hungarian). – In: TÓTH T. M. (Eds) Magmás és Metamorf képződmények a Tiszai egységben. Geolitera 325-341

VERMILYE, J.M. & SCHOLZ, C.H. (1995): Relation between vein length and aperture. –Journal of Structural Geology, 17 (3): 423-434.

WITHERSPOON, P.A., WANG, J.S.Y., IWAI, K. & GALE, J.E. (1980): Validity of cubic law for fluid flow in deformable rock fracture. – Water Resources Research, 16 (6): 1016-1024.

WU, Q. & KULATILAKE, P.H.S.W. (2012): REV and its properties on fracture system and mechanical properties and an orthotropic constitutive model for a jointed rock mass in a dam site in China. – Computers and Geotechnics, 43: 124–142.

YIELDING,, G., WALSH, J.J. & WATTERSON, J. (1992): The prediction of small scale faulting in reservoirs. – First Break, 10: 449-460.