Petrology, geochemistry and tectono-magmatic affinity of gabbroic olistoliths from the ophiolite mélange in the NW Dinaric-Vardar ophiolite zone (Mts. Kalnik and Ivanščica, North Croatia)
Main Article Content
Abstract
Mafic intrusive rocks are subordinately represented fragments of the oceanic crust in the ophiolite mélange exposedat Mts. Kalnik and Ivanščica located in the NW Dinaric-Vardar ophiolite zone. This ophiolite mélange occurs in thenorthern area of the Kalnik Unit and represents the SW surface boundary of the Zagorje-Mid-Transdanubian ShearZone. The mélange, except for mafic intrusive rocks, consists of a chaotic mixture of various extrusive rocks formedin different tectonic settings of the Repno Oceanic Domain (ROD). The ROD was the segment of Neo-Tethys thatconnects the Meliata-Maliak and Dinaric-Vardar oceanic systems. Previous study of mafic extrusive sequences suggestedan 80 Ma period of tectono-magmatic evolution of the ROD from intra-continental rifting during the Anisian,to the formation of proto-arc crust during the Callovian-Oxfordian. The domain exposes ophiolitic rocks in four mélangeareas. Isotropic gabbroic rocks that are abundant in two northern areas (Mts. Kalnik and Ivanščica), can be discriminatedinto three distinct geochemical groups: (A) N-MORB-type gabbro [(Th/Nb)n = 0.99–1.10; (Nb/La)n =0.95–0.99], (B) IAT-type amphibole gabbro with clear supra-subduction characteristics [(Th/Nb)n = 6.04–8.16; (Nb/La)n = 0.32–0.42] and (C) BABB-type amphibole-bearing gabbro [(Th/Nb)n = 2.88–4.02; (Nb/La)n = 0.58–0.69].Representative gabbro samples of each geochemical group were dated by the Ar-Ar and/or the K-Ar dating method.The Early Jurassic N-MORB-type gabbros (geochemical group A), ~185 Ma old, signifies a peculiar stage of Palaeo-Tethyan slab break-off. The Late Jurassic IAT-type gabbros (geochemical group B), ~147 Ma old, is the vestige of anascent intra-oceanic arc, whilst the Early Cretaceous BABB-type gabbros (geochemical group C), ~100 Ma old,provides evidence of magmatism in the back-arc marginal basin. The analyzed gabbroic rocks enable refinement andcompletion of the geodynamic evolution of the ROD, from the opening of an ensialic back-arc basin during the Ladinianand a continuous spreading event until the Bajocian. Intra-oceanic convergence was initiated in the Bathonian,with the formation of a nascent island-arc during the Tithonian, leading to formation of a Cretaceous ensimatic backarcmarginal basin. There are many lines of evidence that correlate the geodynamic evolution of the ROD with theAlbanide-Hellenide Neo-Tethyan oceanic segment.
Downloads
Article Details
Authors have copyright and publishing rights on all published manuscripts.
References
BALEN, D., SCHUSTER, R. & GARAŠIĆ, V. (2003): The Kamenjača olivine gabbro from Moslavačka Gora (South Tisia, Croatia).– Rad Hrvatske akademije znanosti i umjetnosti, 486, 57-76.
BAZYLEV, B.A., POPEVIĆ, A., KARAMATA, S., KONONKOVA, N.N., SIMAKIN, S.G., OLUJIĆ, J., VUJNOVIĆ, L. & MEMOVIĆ, E. (2008): Mantle peridotites from the Dinaridic ophiolite belt and the Vardar zone western belt, central Balkan: A petrological comparison.– Lithos, 108, 37-71.
BECCALUVA, L., MACCIOTTA, G., PICCARDO, G.B. & ZEDA, O. (1989): Clinopyroxene composition of ophiolite basalts as petrogenetic indicator.– Chemical Geology, 77, 165-182.
BELAK, M., PAMIĆ, J., KOLAR-JURKOVŠEK, T., PECSKAY, Z. & KARAN, D. (1995): Alpine low-grade regional metamorphic complex of Mt. Medvednica (northwest Croatia).– In: I. VLAHOVIĆ, I. VELIĆ & M. ŠPARICA (eds.): 1st Croatian Geological Congress Proceedings. Institute of Geology, Zagreb, pp. 67-70 (in Croation with English summary).
BLOOMER, S.H., TAYLOR, B., MACLEOD, C.J., STERN, R.J., FRYER, P., HAWKINS, J.W. & JOHNSON, L. (1995): Early arc volcanism and the ophiolite problem; a perspective from drilling in the western Pacific.– In: B. TAYLOR & J. NATLAND (eds.): Active Margins and Marginal Basins of the Western Pacfic. Geophysical Monograph, American Geophys Union, 88, 1-30.
BORTOLOTTI, V., MARRONI, M., PANDOLFI, L., PRINCIPI, G. & SACCANI, E. (2002): Interaction between mid-ocean ridge and subduction magmatism in Albanian ophiolites.– Journal of Geology, 110, 561-576.
BORTOLOTTI, V. & PRINCIPI, G. (2005): Tethyan ophiolites and Pangea break-up.– Island Arc, 14, 442-470.
CHEN, C.Y., FREY, F.A. & GARCIA, M.O. (1990): Evolution of alkalic lavas at Haleakala Volcano, east Maui, Hawaii.– Contributions to Mineralogy and Petrology, 105, 197-218.
CLAESON, D.T. & MEURER, W.P. (2004): Fractional crystallization of hydrous basaltic ‘arc-type’ magmas and the formation of amphibole-bearing gabbroic cumulates.– Contributions to Mineralogy and Petrology, 147, 288-304.
CLAGUE, D.A. & FREY, F.A. (1982): Petrology and trace element geochemistry of the Honolulu Volcanism, Oahu: implications for the oceanic mantle below Hawaii.– Journal of Petrology, 23, 447-504.
COLOMBI, A. (1989): Métamorphism et Geochemie des roches mafiques des Alpes Ouest-centrales (géoprofil Viěge-Domodos-sola-Locerano).– Mémories de Géologie (Lausanne), 4, 1-216.
CONRAD, W.K. & KAY, R.W. (1984): Ultramafic and mafic inclusions from Adak Islands: Crystalization history, and implications for the nature of primary magmas and crustal evolution in the Aleutian arc.– Journal of Petrology, 25, 88-125.
CONSTANTIN, M. (1999): Gabbroic intrusion and magmatic metasomatism in harzburgites from the Garrett transform fault: implication for the nature of the mantle-crust transition at fast-spreading ridges.– Contributions to Mineralogy and Petrology, 136, 111-130.
COOGAN, L.A. (2003): Contamination of the lower oceanic crust in the Oman ophiolite.– Geology, 3, 1065-1068.
COOGAN, L.A., WILSON, R.N., GILLIS, K.M. & MACLEOD, C.J. (2001): Near-solidus evolution of oceanic gabbros: insights from amphibole geochemistry.– Geochimica et Cosmochimica Acta, 65, 4339-4357.
COUSENS, B.L., ALLAN, J.F. & GORTON, M.P. (1994): Subduction-modified pelagic sediments as the enriched component in back-arc basalts from the Japan Sea: Ocean Drilling Program Sites 797 and 794.– Contributions to Mineralogy and Petrology, 117, 421-434.
COX, K.G., BELL, J.D. & PANKHUST, R.J. (1979): The interpretation of igneous rocks.– London, UK: George Allen and Unwin, 450 pp.
CRNKOVIĆ, B., BABIĆ, V. & TOMAŠIĆ, I. (1974): The gabbro of Hruškovec near Ljubeščica on mount Kalnik (Northern Croatia).– Geološki Vjesnik, 27, 153-171 (in Croatian with English summary).
DEBARI, S.M. & COLEMAN, R.G. (1989): Examination of deep levels of an island arc: Evidence from the Tonsina ultramafic-mafic assemblage, Tonsina, Alaska.– Journal of Geophysical Research, 94, 4373-4391.
ERNST, W.G. & LIU, J. (1998): Experimental phase-equilibrium study of Al- and Ti-contents of calcic amphibole in MORB – A semiquantitative thermobarometer.– American Mineralogist, 83, 952-969.
EWART, A., BRYAN, W.B., CHAPPELL, B.W. & RUDNICK, R.L. (1994): 24. Regional geochemistry of the Lau-Tonga arc and back arc system.– In: J. HAWKINS, L. PARSON & J. ALLAN (eds.): The Ocean Drilling Program Proceedings, Scientific Results, 135, 385-425.
EWART, A., COLLERSON, K.D., REGELOUS, M., WENDT, J.I. & NIU, Y. (1998): Geochemical evolution within the Tonga-Kermadec-Lau arc-back-arc system: the role of varying mantle wedge composition in space and time.– Journal of Petrology, 39, 331-368.
FESTA, A., PINI, G.A., DILEK, Y. & CODEGONE, J. (2010): Mélanges and mélange-forming processes: a historical overview and new concepts.– In: Y. DILEK (ed.): Alpine Concept in Geology. International Geology Review, 52, 1040-1105.
GESHI, N., UMINO, S., KUMAGAI, H., SINTON, J.M., WHITE, S.M., KISIMOTO, K. & HILDE, T.W. (2007): Discrete plumbing systems and heterogeneous magma sources of a 24 km3 off-axis lava field on the western flank of East Pacific Rise, 14 S.– Earth and Planetary Science Letters, 258, 61-72.
GORIČAN, Š., HALAMIĆ, J., GRGASOVIĆ, T. & KOLAR-JURKOVŠEK, T. (2005): Stratigraphic evolution of Triassic arc-backarc system in northwestern Croatia.– Bulletin de la Societe Géologique de France, 176, 3-22.
GRIBBLE, R.F., STERN, R.J., NEWMAN, S., BLOOMER, S.H. & O`HEARN, T. (1998): Chemical and isotopic composition of lavas from the northern Mariana trough: implications for magmagenesis in back-arc basins.– Journal of Petrology, 39, 125-154.
HAAS, J., MIOČ, P., PAMIĆ, J., TOMLJENOVIĆ, B., ÁRKAI, P., BÉRCZI-MAKK, A., KOROKNAI, B., KOVÁCS, S. & R-FELGENHAUER, E. (2000): Complex structural pattern of the Alpine-Dinaridic Pannonian triple junction.– International Journal of Earth Sciences, 89, 377-389.
HAAS, J. & KOVÁCS, S. (2001): The Dinaridic-Alpine connection – as seen from Hungary.– Acta Geologica Hungarica, 44, 345-362.
HALAMIĆ, J. (1998): Lithostratigraphy of Jurassic and Cretaceous sediments with ophiolites from the Mts. Medvednica, Kalnik and Ivanščica. PhD Thesis, University of Zagreb, Zagreb, 188 pp. (in Croatian with English summary).
HÉBERT, R.M., CONSTANTIN, M. & ROBINSON, P.T. (1991): Primary mineralogy of Leg 118 gabbroic rocks and their place in the spectrum of oceanic mafic igneous rocks.– In: R.P. VON HERZEN, P.T. ROBINSON et al., (eds.): The Ocean Drilling Program Proceedings, Scientific Results, 118, 3-20.
HEY M.H. (1954): A new review of the chlorites.– Miner. Mag., 30, 277-292.
IGNJATIĆ, S. (2007): Upper Cretaceous amphibolites from lherzolite metamorphic sole (Kalnik Mt., Croatia). B.Sc Thesis, University of Zagreb, Zagreb, 61 pp. (in Croatian with English summary).
INSERGUEIX-FILIPPI, D., DUPEYRAT, L., DIMO-LAHITTE, A., VERGÉLY, P. & BÉBIEN, J. (2000): Albanian ophiolites. II – Model of subduction zone infancy at a mid-ocean ridge.– Ofioliti, 25, 47-53.
JUDIK, K., RANTITSCH, G., RAINER, T.M., ARKAI, P. & TOMLJENOVIĆ, B. (2008): Alpine metamorphism of organic matter in metasedimentary rocks from Mt. Medvednica (Croatia).– Swiss Journal of Geosciences, 101, 605-616.
KISS, G., MOLNÁR, F., PALINKAŠ, L., KOVÁCS, S. & HORVATOVIĆ, H. (2012): Correlation of Triassic advanced rifting-related Neotethyan submarine basaltic volcanism of the Darnó Unit (NE-Hungary) with some Dinaridic and Hellenidic occurrences on the basis of volcanological, fluid–rock interaction, and geochemical characteristics.– Int. J. Earth Sci., 101, 1503-1521.
KOCAK, K., ISIK, F., ARSLAN, M. & ZEDEF, V. (2005): Petrological and source region characteristics of ophiolitic hornblende gabbros from the Aksarav and Kavseri regions, central Anatolian crystalline complex, Turkey.– Journal of Asian Earth Sciences, 25, 883-891.
KOSTOPOULOS, D.K. & JAMES, S.D. (1992): Parameterization of the melting regime of the shallow upper mantle and the effects of variable lithospheric stretching on mantle modal stratification and trace element concentrations in magmas.– Journal of Petrology, 33, 665-691.
LEAKE, B.E. et al. (1997): Nomenclature of amphiboles: Report of the Subcommittee on amphiboles of the International Mineralogical Association, Commission on New Minerals and Mineral Names.– Canadian Mineralogist, 35, 219-246.
LEAT, P.T., LIVERMORE, R.A., MILLAR, I.L. & PEARCE, J.A. (2000): Magma supply in back-arc spreding centre segment E2, East Scotia Ridge.– Journal of Petrology, 41, 845-866.
LUDWIG, K. (2005): Isoplot/Ex v.3, USGS Open File report.
LUGOVIĆ, B., ALTHERR, R., RACZEK, I., HOFMANN, A.W. & MAJER, V. (1991): Geochemistry of peridotites and mafic igneous rocks from the Central Dinaric Ophiolite Belt, Yugoslavia.– Contributions to Mineralogy and Petrology, 106, 201-216.
LUGOVIĆ, B., ŠEGVIĆ, B. & ALTHERR, R. (2006): Petrology and tectonic significance of greenschists from the Medvednica Mts. (Sava unit, NW Croatia).– Ofioliti, 31, 39-50.
LUGOVIĆ, B., SLOVENEC, DA., HALAMIĆ, J. & ALTHERR, R. (2007): Petrology, geochemistry and geotectonic affinity of the Mesozoic ultramafic rocks from the southwesternmost Mid-Transdanubian Zone in Croatia.– Geologica Carpathica, 58, 511-530.
MAHLBURG, V. & KAY, S. (1983): Metamorphism in the Aleutian arc: the Finger bay pluton, Adak, Alaska.– Canadian Mineralogist, 2l, 665-681.
MARTINEZ, F., OKINO, K., OHARA, Y., REYSENBACH, A-M. & GOFFREDI, S.K. (2007): Back-arc basins.– Oceanography, 20, 117-127.
MELI, S., MONTANINI, A., THÖNI, M. & FRANK, W. (1996): Age of granulite blocks from the external Linguride units (Northern Apennines, Italy).– Memorie di Scienze Geologiche, Padova, 48, 65-72.
MCCULLOCH, M.T., GREGORY, R.T., WASSERBURG, G.J. & TAYLOR JR., H.P. (1981): Sm-Nd, Rb-Sr, and 18O/16O isotopic systematics in an oceanic crustal section: evidence from the Samail ophiolite.– Journal of Geophysical Research, 86, 2721-2735.
MILLER, CH. & THÖNI, M. (1997): Eo-Alpine eclogitisation of Permian MORB-type gabbros in the Koralpe (Eastern Alps, Austria): new geochronological, geochemical and petrological data.– Chemical Geology, 137, 283-310.
MORIMOTO, N. (1988): Nomenclature of pyroxenes.– Schweizeriche Mineralogische und Petrogrographische Mitteilungen, 68, 95-111.
PALINKAŠ, L.A., BERMANEC, V., MORO, A., DOGANČIĆ, D. & STRMIĆ-PALINKAŠ, S. (2006): The northernmost Ni-lateritic weathering crust in the Tethyan domain, Gornje Orešje, Medvednica Mt., Mesozoic ophiolite belts of northern part of the Balkan.– Balkan Peninsula Proceedings, 97-101.
PAMIĆ, J. (1997): The northwesternmost outcrops of the Dinaridic ophiolites: a case study of the Mt. Kalnik (North Croatia).– Acta Geologica Hungarica, 40, 37-56.
PAMIĆ, J. (2000): The Periadriatic-Sava-Vardar Suture Zone.– In: I. VLAHOVIĆ & R. BIONDIĆ (eds.): 2nd Croatian Geological Congress Proceedings. Institute of Geology, Zagreb, pp. 333-337 (in Croatian with English summary).
PAMIĆ, J. (2002): The Sava-Vardar Zone of the Dinarides and Hellenides versus the Vardar ocean.– Eclogae Geologicae Helvetiae, 95, 99-113.
PAMIĆ, J. & TOMLJENOVIĆ, B. (1998): Basic geological data on the Croatian part of the Mid-Transdanubian Zone as exemplified by Mt. Medvednica located along the Zagreb-Zemplen Fault Zone.– Acta Geologica Hungarica, 41, 389-400.
PAMIĆ, J., TOMLJENOVIĆ, B. & BALEN, D. (2002): Geodynamic and petrogenetic evolution of Alpine ophiolites from the central and NW Dinarides: an overview.– Lithos, 65, 113-142.
PEARCE, J.A. (1983): Role of the sub-continental lithosphere in magma genesis at active continental margins.– In: C.J. HAWKESWORTH & M.J. NORRY (eds.): Continental basalts and mantle xenoliths. Nantwich, UK: Shiva, pp. 230-249.
PEARCE, J.A., LIPPARD, S.J. & ROBERTS, S. (1984): Characteristics and tectonic significance of supra-subduction zone ophiolites.– In: B.P. KOKELAAR, M.F. HOWELLS (eds.): Marginal Basin Geology, Geol Soc London, Special Publications, 16, 17-94.
PEARCE, J.A., BAKER, P.E., HARVEY, P.K. & LUFF, I.W. (1995): Geochemical evidence for subduction fluxes, mantle melting for fractional crystallization beneath the South Sandwich island arc.– Journal of Petrology, 36, 1073-1109.
PEATE, D.W., PEARCE, J.A., HAWKESWORTH, C.J., COLLEY, H., EDWARDS, M.H. & HIROSE, K. (1997): Geochemical variations in Vanuatu arc lavas: the role of subducted material and a variable mantle wedge composition.– Journal of Petrology, 38, 1331-1358.
POLJAK, J. (1942): A contribution to the knowledge of geology of the Mt. Kalnik.– Vjestnik Hrvatskog Državnog Geoložkog Zavoda i Hrvatskog Državnog Geoložkog Muzeja, 1, 53-92 (in Croatian with German summary).
POUCHOU, J.L. & PICHOIR, F. (1984): A new model for quantitative analyses. I. Application to the analysis of homogeneous samples.– La Recherche Aérospatiale, 3, 13-38.
POUCHOU, J.L. & PICHOIR, F. (1985): “PAP” (φ-ρ-Z) correction procedure for improved quantitative microanalysis.– In: J.T. Armstrong (ed.), Microbeam Analysis, San Francisco, California, USA: San Francisco Press, pp. 104-106.
RENNE, P.R., MUNDIL, R., BALCO, G., MIN, K. & LUDWIG, K.R. (2010): Joint determination of 40K decay constants and 40Ar*/40K for the Fish Canyon sanidine standard, and improved accuracy for 40Ar/39Ar geochronology.– Geochimica et Cosmochimica Acta, 74, 5349-5367.
RENNE, P.R., MUNDIL, R., BALCO, G., MIN, K. & LUDWIG, K.R. (2011): Response to the Comment by W. H. Schwarz et al. on “Joint determination of 40K decay constants and 40Ar/40K for the Fish Canyon sanidine standard, and improved accuracy for 40Ar/39Ar geochronology” by P.R. Renne et al. (2010).– Geochimica et Cosmochimica Acta, 75, 5097-5100.
ROBERTSON, A., KARAMATA, S. & ŠARIĆ, K. (2009): Overwiew of ophiolites and related units in the late Palaeozoic-early Cenozoic magmatic and tectonic development of Tethys in the northern part of the Balkan region.– Lithos, 108, 1-36.
SACCANI, E., BECCALUVA, L., PHOTIADES, A. & ZEDA, O. (2011): Petrogenesis and tectono-magmatic significance of basalts and mantle peridotites from the Albanian-Greek ophiolites and sub-ophiolitic mélanges. New constraints for the Triassic-Jurassic evolution of the Neo-Tethys in the Dinaride sector.– Lithos, 124, 227-242.
SCHMID, S.M., BERNOULLI, D., FÜGENSCHUH, B., MATENCO, L., SCHEFFER, S., SCHUSTER, R., TISCHLER, M. & USTASZEWSKI, K. (2008): The Alpine-Carpathian-Dinaridic orogenic system: correlation and evolution of tectonic units.– Swiss Journal of Geoscience, 101, 139-183.
SCHWARZ, W.H., KOSSERT, K., TRIELOFF, M. & HOPP, J. (2011): Comment on the “Joint determination of 40K decay constants and 40Ar*/40K for the Fish Canyon sanidine standard, and improved accuracy for 40Ar/39Ar geochronology” by Paul R. Renne et al. (2010).– Geochimica et Cosmochimica Acta, 75, 5094-5096.
SCHWARZ, W.H. & TRIELOFF, M. (2007): Intercalibration of 40Ar-39Ar age standards NL-25, HB3gr hornblende, GA1550, SB-3HD-B1 biotite and BMus/2 muscovite.– Chemical Geology, 242, 218-231.
SERRI, G. & SAITTA, M. (1980): Fractionation trends of gabbroic complexes from high-Ti and low-Ti ophiolites and from the crust of major oceanic basins: a comparison.– Ofioliti, 5, 241-264.
SERRI, S. (1981): The petrochemistry of ophiolitic gabbro-complexes: A key for classification of ophiolites to low-Ti and high-Ti types.– Earth and Planetary Science Letters, 52, 203-212.
SHERVAIS, J.W. (1982): Ti-V plots and petrogenesis of modern and ophiolitic lavas.– Earth and Planetary Science Letters, 59, 101-118.
SHERVAIS, J.W. (2001): Birth, dead, and resurrection: The Life cycle of supra-subduction zone ophiolites.– Geochemistry, Geophysics, Geosystems, 2, 1010, pp. 45 doi: 10 1029/2000GC000080.
SINTON, J.M., FORD, L., CHAPPELL, B. & MCCULLOCH, M. (2003): Magma genesis and mantle heterogeneity in the Manus back-arc basin, Papua New Guinea.– Journal of Petrology, 44, 159-195.
SLOVENEC, DA. & LUGOVIĆ, B. (2008): Amphibole gabbroic rocks from the Mt. Medvednica ophiolite mélange (NW Croatia): geochemistry and tectonic setting.– Geologica Carpathica, 59, 277-293.
SLOVENEC, DA. & LUGOVIĆ, B. (2009): Geochemistry and tectono-magmatic affinity of extrusive and dyke rocks from the ophiolite mélange in the SW Zagorje-Mid-Transdanubian Zone (Mt. Medvednica, Croatia).– Ofioliti, 34, 63-80.
SLOVENEC, DA. & LUGOVIĆ, B. (2012): Evidence of the spreading culmination in the Eastern Tethyan Repno oceanic domain assessed by the petrology and geochemistry of N-MORB extrusive rocks from the Mt. Medvednica ophiolite mélange (NW Croatia).– Geologia Croatica, 65, 435-446.
SLOVENEC, DA., LUGOVIĆ, B. & VLAHOVIĆ, I. (2010): Geochemistry, petrology and tectonomagmatic significance of basaltic rocks from the ophiolite mélange at the NW External-Internal Dinarides junction (Croatia).– Geologica Carpathica, 61, 273-294.
SLOVENEC, DA., LUGOVIĆ, B., MEYER, H-P. & GARAPIĆ-ŠIFTAR, G. (2011): A tectono-magmatic correlation of basaltic rocks from ophiolite mélanges at the north-eastern tip of the Sava-Vardar suture Zone, Northern Croatia, constrained by geochemistry and petrology.– Ofioliti, 36, 77-100.
SÖLVA, H., GRASEMANN, B., THÖNI, M., THIEDE, R. & HABLER, G. (2005): The Schneeberg Normal Fault Zone: Normal faulting associated with Cretaceous SE-directed extrusion in the Eastern Alps (Italy/Austria).– Tectonophysics, 401, 143-166.
STAMPFLI, G.M. & BOREL, G.D. (2002): A plate tectonic model for the Paleozoic and Mesozoic constrained by dinamic plate boundaries and restored synthetic ocean isochrons.– Earth and Planetary Science Letters, 196, 17-33.
STAMPFLI, G.M. & BOREL, G.D. (2004): The TRANSMED transects in space and time: constraints on the paleotectonic evolution of the Mediterranean domain.– In: W. CAVAZZA, F. ROURE, W. SPAKMAN, G.M. STAMPFLI & P.A. ZIEGLER (eds.): The TRANSMED Atlas: the Mediterranean Region from crust to mantle. Heidelberg, Germany: Springer, pp. 53-80.
STEIGER, R.H. & JÄGER, E. (1977): Subcommission on Geochronology: convention on the use of decay constants in geo- and cosmochronology.– Earth and Planetary Science Letters, 36, 359-362.
STERN, C. (1979): Open and closed system igneous fractionation within two Chilean ophiolites and tectonic implication.– Contributions to Mineralogy and Petrology, 68, 243-258.
STERN, C. (2004): Subduction initiation: spontaneous and induced.– Earth and Planetary Science Letters, 226, 275-292.
STERN, R.J. & BLOOMER, S.H. (1992): Subduction zone infancy: Examples from the Eocene Izu-Bonin-Mariana and Jurassic California arcs.– Geological Society of America Bulletin, 104, 1621-1636.
STERN, R.J., BLOOMER, S.H., MARTINEZ, F., YAMAZAKI, T. & HARRISON, T.M. (1996): The composition of back-arc basin lower crust and upper mantle in the Mariana Trough: A first report.– Island Arc, 5, 354-372.
SUN, S.S. & MCDONOUGH, W.F. (1989): Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: A.D. SAUNDERS & M.J. NORRY (eds.): Magmatism in ocean basins.– Geological Society of London, Special Publications, 42, 313-345.
ŠIMUNIĆ, AN. & PAMIĆ, J. (1989): Ultramafic rocks from the neighbourhood of Gornje Orešje on the northwestern flanks of Mt. Medvednica (northern Croatia).– Geološki Vjesnik, 42, 93-101.
ŠIMUNIĆ, AN., PIKIJA, M., HEĆIMOVIĆ, I. & ŠIMUNIĆ, AL. (1981): Basic geological map 1:100.000. Sheet Varaždin, explanatory notes. Institut za geološka istraživanja Zagreb - Savezni geološki zavod Beograd, pp. 1-81 (in Croatian with English summary).
ŠIMUNIĆ, AN., PIKIJA, M. & HEĆIMOVIĆ, I. (1982): Basic geological map 1:100.000. Sheet Varaždin, Institut za geološka istraživanja Zagreb - Savezni geološki zavod Beograd.
ŠIMUNIĆ, AN., NAJDENOVSKI, J. & PAMIĆ, J. (1993): Chaotic rock complexes – possible hydrocarbon accumulations in South-Western parts of the Pannonian Basin (Republic of Croatia).– Nafta, 44, 609-616.
TARI, V. & PAMIĆ, J. (1998): Geodynamic evolution of the Northern Dinarides and the southern parts of the Pannonian Basin.– Tectonophysics, 297, 296-281.
TATSUMI, Y. & EGGINS, S. (1995): Subduction zone magmatism. Cambridge, Massachusetts, USA: Blacwell, pp. 221.
TOMLJENOVIĆ, B., CSONTOS, L., MÁRTON, E. & MÁRTON, P. (2008): Tectonic evolution of the northwestern Internal Dinarides as constrained by structures and rotation of Medvednica Mountains, North Croatia.– Geological Society London, Special Publications, 298, 145-167.
TRIBUZIO, R., TIEPOLO, M. & THIRLWALL, M.F. (2000): Origin of titanian pargasite in gabbroic rocks from the Northern Apennine ophiolites (Italy): insights into the late-magmatic evolution of a MOR-type intrusive sequence.– Earth and Planetary Science Letters, 176, 281-293.
TRUBELJA, F., MARCHING, V., BURGATH, K-P. & VUJOVIĆ, Ž. (1995): Origin of the Jurassic Tethyan ophiolites in Bosnia: a geochemical approach to tectonic setting.– Geologia Croatica, 48, 49-66.
USTASZEWSKI, K., SCHMID, S.M., LUGOVIĆ, B., SCHUSTER, R., SCHALTEGGER, U., BERNOULLI, D., HOTTINGER, L., KOUNOV, A., FÜGENSCHUH, B. & SCHEFER, S. (2009): Late Cretaceous intra-oceanic magmatism in the internal Dinarides (northern Bosnia and Herzegovina): Implications for the collision of the Adriatic and European plates.– Lithos, 108, 106-125.
VLAHOVIĆ, I., TIŠLJAR, J., VELIĆ, I. & MATIČEC, D. (2005): Evolution of the Adriatic carbonate platform: palaeogeography, main events and depositional dynamics.– Palaeogeography, Palaeoclimatology Palaeoecology, 220, 333-360.
VRKLJAN, M. (1989): Eruptive rocks from Mt. Kalnik. PhD Thesis, University of Zagreb, Zagreb, 94 pp. (in Croatian with English summary).
VRKLJAN, M. & GARAŠIĆ, V. (2004): Different geochemical signatures developed in some basic magmatic rocks of Mt. Kalnik (North Croatia).– Rudarsko-geološko-naftni zbornik, 16, 65-73.
WAKABAYASHI, J. & DILEK, Y. (2000): Spatial and temporal relationships between ophiolites and their metamorphic soles: a test of model of forearc ophiolite genesis.– In: Y. DILEK, E.M. MOORE, D. ELTHON & A. NICOLAS (eds.): Ophiolites and oceanic crust: New insights from field studies and the ocean drilling program: Boulder, Colorado. The Geological Society of America, Special Paper, 349, 53-64.
WAKABAYASHI, J. & DILEK, Y. (2003): What constitutes “emplacement” of an ophiolite?: mechanisms relationship to subduction initiation and formation of metamorphic soles.– In: Y. DILEK & P.T. ROBINSON (eds.): Ophiolites in Earth history. Geological Society London, Special Publication, 218, 427-447.
WHATAM, S.A. & STERN, R.J. (2011): The ‘subduction initiation rule’: a key for linking ophiolites, intra-oceanic forearcs, and subduction initiation.– Contributions to Mineralogy and Petrology, 162, 1031-1045.
WILSON, M. (1989): Igneous petrogenesis. London, UK: Unwin Hyman Ltd., 466 pp.
WOOD, D.A. (1980): The application of a Th-Hf-Ta diagram to problems of tectonomagmatic classification and establishing the nature of crustal contamination of basaltic lavas of the British Tertiary volcanic province.– Earth and Planetary Science Letters, 50, 11-30.
ZINDLER, A. & HART, S.R. (1986): Chemical geodynamics.– Annual Review of Earth and Planetary Sciences, 14, 439-571.