Origin and K-Ar age of the phreatomagmatic breccia at the Trepča Pb-Zn-Ag skarn deposit, Kosovo: Implications for ore-forming processes

Main Article Content

Sabina Strmić Palinkaš
Ladislav A. Palinkaš
Magda Mandić
Zvjezdana Roller-Lutz
Zoltan Pécskay
Gani Maliqi
Vladimir Bermanec

Abstract

The Trepča Pb-Zn-Ag skarn deposit in Kosovo is spatially and temporarily related to the phreatomagmatic breccia of Oligocene age (~23 Ma). The deposit shows features typical for skarn deposits worldwide, including a stage of isochemical metamorphism, a prograde stage of an anhydrous, low oxygen and low sulfur fugacity character and a retrograde stage characterized by an increase in the water activity as well as by an increase in oxygen and sulfur fugacities. The mineralization is hosted by the recrystallized Upper Triassic limestone. The prograde mineralization consists mainly of Ca-Fe-Mn±Mg pyroxenes. The host recrystallized limestone at the contact with the prograde (skarn) mineralization have the increased content of Fe, Mn, Mo, As, Au, Cs, Ga, REE and Y suggesting their transport by infiltrating magmatic fluids. The decreased  d13C and  d18O values reflect a contribution of magmatic CO2. The retrograde mineral assemblage comprises ilvaite, magnetite, arsenopyrite, pyrrhotite, marcasite, pyrite, Ca-Fe-Mn±Mg carbonates and quartz. Hydrothermal ore minerals, mostly galena, sphalerite and pyrite, were deposited contemporaneously with the retrograde stage of the skarn development. Syn-ore and post-ore carbonates reflect a diminishing influence of magmatic CO2. Syn-ore carbonates are enriched in Fe, Mg, Mn, many chalcophile elements, including Ag, As, Bi, Cd, Cu, Pb, Sb and Zn, as well as in Au, Y and REE. The post-ore stage accompanied the precipitation of significant amount of Ca-rich carbonates including the travertine deposits at the deposit surface.

The phreatomagmatic breccia was developed along a NW dipping contact between the ore bearing recrystallized limestone and the overlying schist. It has an inverted cone shape with the vertical extension up to 800 m and diameter up to 150-m. The upper part of the diatreme (an underground segment of the phreatomagmatic breccia) is characterized by the presence of a hydrothermally altered rootless quartz-latite dike surrounded by an unsorted polymict breccia mantle. Despite the alteration processes, the dike has a preserved porphyritic texture. Partly preserved sanidine, accompanied with the mixture of muscovite and quartz, reflects a near-neutral to weakly acidic environment. The clasts of country rocks and skarn mineralization underwent intense milling and mixing due to repeated magmatic penetrations. Sericitization of the breccia matrix, locally accompanied with minor kaolinitization, point to an increased water activity under near-neutral to weakly acidic conditions. Large fragments originally composed of anhydrous skarn minerals (pyroxenes) are usually completely altered to a mixture of fibroradial magnetite, quartz and various amount of carbonates suggesting an increase in oxygen fugacity. Their pyrite rims reflect that the increase in oxygen fugacity was followed by an increase in sulfur fugacity. The clast predominantly composed of Fe-sulfides and minor Bi-sulfides point that the increase in sulfur fugacity was locally sufficient to complete sulfidation of hedenbergite to pyrrhotite and/or pyrite.

Although the phreatomagmatic breccia at the Trepča Pb-Zn-Ag skarn deposit does not carry significant amounts of the ore mineralization, its formation was crucial for the ore deposition. Phreatomagmatic explosions and formation of the breccia turned the system from the lithostatic to hydrostatic regime and triggered the retrograde stage increasing the water activity and oxygen fugacity in the system. In addition, cooling and decompression of the system contributed to more effective degassing of magmatic sulfur increased the sulfur fugacity. 

Downloads

Download data is not yet available.

Article Details

Section
Original Scientific Papers

References

ALBINSON, T., NORMAN, D.I., COLE, D. & CHOMIAK, B. (2001): Con¬trols on formation of low-sulfidation epithermal deposits in Mexico: Con¬straints from fluid inclusion and stable isotope data.– Society of Econom¬ic Geologist Special Publication, 8, 1–32.

ANDERSON, E.D., ATKINSON JR, W.W., MARSH, T. & IRIONDO, A. (2009): Geology and geochemistry of the Mammoth breccia pipe, Copper Creek mining district, southeastern Arizona: evidence for a magmatic–hy¬drothermal origin.– Miner. Deposita, 44/2, 151-170. doi: 10.1007/ s00126-008-0206-2

BAKER, E.M., KIRWIN, D.J. & TAYLOR, R.G. (1986): Hydrothermal brec¬cia pipes.– EGRU Contribution 12, James Cook University of North Queensland, Australia, 45p.

BAKER, E.M. & ANDREW, A.S. (1991): Geologic, fluid inclusion and stable isotope studies of the gold bearing breccia pipe at Kidston, Queensland, Australia.– Econ. Geol., 86/4, 810-830. doi: 10.2113/gsecongeo.86.4.810

BALOGH, K. (1985): K/Ar dating of Neogene volcanic activity in Hungary: experimental technique, experiences and methods of chronological stud¬ies.- ATOMKI report, Debrecen, D/1, 277–288.

BAUMGARTNER, R., FONTBOTÉ, L. & VENNEMANN, T. (2008): Min¬eral zoning and geochemistry of epithermal polymetallic Zn-Pb-Ag-Cu- Bi mineralization at Cerro de Pasco, Peru.– Econ. Geol., 103/3, 493-537. doi: 10.2113/gsecongeo.103.3.493

BODNAR, R.J. (2003): Introduction to fluid inclusions.– Min Assoc Can Short Course Series, 32, 1–8.

BODNAR, R.J. & VITYK, M.O. (1994): Interpretation of microthermometric data for H2O-NaCl fluid inclusions.- In: DE VIVO, B. & FREZZOTTI, M.L. (eds.): Fluid Inclusions in Minerals: Methods and Applications. Short Course of the Working Group (IMA) Inclusions in Minerals, Vir¬ginia Polytechnic Institute and State University, Blacksburg, Virginia, 117-130.

BODNAR, R.J., REYNOLDS, T.J. & KUEHN, C.A. (1985): Fluid inclusion systematics in epithermal systems.– Rev. Econ. Geol., 2, 73–98.

BORISENKO, A.S. (1977): Study of the salt composition of solutions of gas– liquid inclusions in minerals by the cryometric method.– Geol.Geofiz., 18, 16–27.

BOROJEVIĆ ŠOŠTARIĆ, S., CVETKOVIĆ, V., NEUBAUER, F., PALINKAŠ, L.A., BERNROIDER, M. & GENSER, J. (2012) Oligocene shoshonitic rocks of the RogoznaMts.(Central Balkan Peninsula): Evi¬dence of petrogenetic links to the formation of Pb–Zn–Ag ore deposits.- Lithos, 148/1, 176-195.

BOROJEVIĆ ŠOŠTARIĆ, S., PALINKAŠ, L.A., NEUBAUER, F., HURAI, V., CVETKOVIĆ, V., ROLLER-LUTZ, Z., MANDIĆ, M. & GENSER, J. (2013): Silver-base metal epithermal vein and listwanite hosted deposit Crnac, Rogozna Mts., Kosovo, part II: A link between magmatic rocks and epithermal mineralization.–Ore Geol. Rev., 50/1, 98-117.

BOROJEVIĆ ŠOŠTARIĆ, S., PALINKAŠ, A.L., NEUBAUER, F., CVETKOVIĆ, V., BERNROIDER, M. & GENSER, J. (2014): The origin and age of the metamorphic sole from the Rogozna Mts., Western Vardar Belt: New evidence for the one-ocean model for the Balkan ophiolites.- Lithos, 192/1, 39-55.

BRANQUET,.Y., CHEILLETZ, A., GIULIANI, G., LAUMONIER, B. & BLANCO, O. (1999): Fluidized hydrothermal breccia in dilatant faults during thrusting: the Colombian emerald deposits.- Geological Society, London, Special Publications, 155/, 183-195. doi: 10.1144/GSL. SP.1999.155.01.14

BYRNE, K. & TOSDAL, R.M. (2014): Genesis of the Late Triassic southwest zone breccia-hosted alkalic porphyry Cu-Au deposit, Galore Creek, Brit¬ish Columbia, Canada.– Econ. Geol., 109/4, 915-938. doi: 10.2113/econ¬geo.109.4.915

CANET, C., GONZÁLEZ-PARTIDA, E., CAMPRUBÍ, A., CASTRO-MO¬RA, J., ROMERO, F.M., PROL-LEDESMA, R.M., LINARES, C., ROMERO-GUADARRAMA, J.A. & SÁNCHEZ-VARGAS, L.I. (2011): The Zn–Pb–Ag skarns of Zacatepec, Northeastern Oaxaca, Mexico: A study of mineral assemblages and ore-forming fluids.– Ore Geol. Rev., 39/4, 277-290.

CANNELL, J., COOKE, D.R., WALSHE, J.L. & STEIN, H. (2005): Geology, mineralization, alteration, and structural evolution of the El Teniente por¬phyry Cu-Mo deposit.- Econ. Geol., 100/5, 979-1003. doi: 10.2113/gsec¬ongeo.100.5.979

CARROLL, M.R. & WEBSTER, J.D. (1994): Solubilities of sulfur, noble gases, nitrogen, chlorine, and fluorine in magmas.– Rev. Miner. Geo¬chem., 30, 231-279.

CLARK, C. & JAMES, P. (2003): Hydrothermal brecciation due to fluid pres¬sure fluctuations: examples from the Olary Domain, South Australia.– Tectonophysics, 366/3, 187-206. doi: 10.1016/S0040-1951(03)00095-7

CLAYPOOL, G.E., HOLSER, W.T., KAPLAN, I.R., SAKAI, H. & ZAK, I. (1980): The age curves of sulfur and oxygen isotopes in marine sulfate, and their mutual interpretation.– ChemGeol, 28/1, 199–259. doi: 10.1016/0009-2541(80)90047-9

COOKE, D.R. & BLOOM, M.S. (1990): Epithermal and subjacent porphyry mineralization, Acupan, Baguio district, Philippines: a fluid-inclusion and paragenetic study.– J. Geochem.Explor., 35/1, 297-340. doi: 10.1016/0375-6742(90)90042-9

CORBETT, G.J. & LEACH, T.M. (1998): Southwest Pacific rim gold-copper systems: Structure, alteration, and mineralization.– Society of Economic Geologists Special Publication, 6, 234.

CVETKOVIĆ, V., KARAMATA, S. & KNEŽEVIĆ, V. (1995): Volcanic rocks of the Kopaonik District.– Geology and Metallogeny of the Kopaonik Mt. Symposium, Belgrade, 185-194.

CVETKOVIĆ, V., PRELEVIĆ, D., DOWNES, H., JOVANOVIĆ, M., VA¬SELLI, O. & PECSKAY, Z. (2004): Origin and geodynamic significance of Tertiary postcollisional basaltic magmatism in Serbia (central Balkan Peninsula).- Lithos, 73/3–4, 161−186. doi: 10.1016/j.lithos.2003.12.004

D’ALESSANDRO, W., GIAMMANCO, S., BELLOMO, S. & PARELLO, F. (2007): Geochemistry and mineralogy of travertine deposits of the SW flank of Mt. Etna (Italy): Relationships with past volcanic and degassing activity.– J. Volcanol. Geoth. Res., 165/1-2, 64-70. doi: 10.1016/j.jvol-geores.2007.04.011

DAVIES, A.G., COOKE, D.R., GEMMELL, J.B., SIMPSON, K.A. (2008): Diatreme breccias at the Kelian gold mine, Kalimantan, Indonesia: Pre¬cursors to epithermal gold mineralization.– Econ. Geol., 103/4, 689-716. doi: 10.2113/gsecongeo.103.4.689

DE MOOR, J.M., FISCHER, T.P., SHARP, Z.D., KING, P.L., WILKE, M., BOTCHARNIKOV, R.E., COTTRELL, E., ZELENSKI, M., MARTY, B., KLIMM, K., RIVARD, C., AYALEW, D., RAMIREZ, C. & KELLEY, K.A. (2013): Sulfur degassing at Erta Ale (Ethiopia) and Masaya (Nicara¬gua) volcanoes: Implications for degassing processes and oxygen fugaci¬ties of basaltic systems.– Geochem. Geophy. Geosy., 14/10, 4076-4108. doi: 10.1002/ggge.20255

DILEK, Y., FURNES, H. & SHALLO, M. (2007):Suprasubduction zone ophi¬olite formation along the periphery of Mesozoic Gondwana.- Gondwana Res., 11/4, 453-475. doi: 10.1016/j.gr.2007.01.005
DIMITRIJEVIĆ, M.D. (2001): The Dinarides and the Vardar zone: A short review of the geology.– Acta Vulcanol., 13/1, 1-8.

ELDERFIELD, H. & GREAVES, M.J. (1982): The rare earth elements in sea¬water.– Nature 296, 214–219. doi: 10.1038/296214a0

FÉRAUD, J., MALIQI, G. & MEHA, V. (2007): Famous mineral localities: the Trepca mine, Stari Trg, Kosovo.– Mineral. Rec., 38/4, 267-298.

GOLDSTEIN, R.H. (2001): Fluid inclusions in sedimentary and diagenetic systems.– Lithos, 55/1, 159–193. doi: 10.1016/S0024-4937(00)00044-X

GOLDSTEIN, R.H. & REYNOLDS, T.J. (1994): Systematics of fluid inclu¬sions in diagenetic minerals.– Society for Sedimentary Geology, Short Course, 31, 199 p. doi: 10.2110/scn.94.31

HAAS, J.L. (1971): The effect of salinity on the maximum thermal gradient of a hydrothermal system at hydrostatic pressure.– Econ. Geol., 66/6, 940– 946. doi: 10.2113/gsecongeo.66.6.940

HENLEY, R.W. (1984): Chemical structure of geothermal systems.– Rev. Econ. Geol., 1, 73–98.

HU, X., WANG, Y.L. & SCHMITT, R.A. (1988): Geochemistry of sediments on the Rio Grande Rise and the redox evolution of the south Atlantic Ocean.– Geochim. Cosmochim. Acta, 52, 201–207. doi: 10.1016/0016- 7037(88)90068-3

JAEGER, J.C. & COOK, N.G.W. (1979): Fundamentals of rock mechanics.– Chapman and Hall, London, 593 p.

JANKOVIĆ, S. (1997): The Carpatho-Balkanides and adjacent area: A sector of the Tethyan Eurasian metallogenic belt.– Miner. Deposita, 32/5, 426–433.

KARAMATA, S., MAJER, V. & PAMIĆ, J. (1980): Ophiolites of Yugosla¬via.– Ofioliti, 1/1, 105-125.
KARAMATA, S., OLUJIĆ, J., PROTIĆ, LJ., MILOVANOVIĆ, D., VUJNOVIĆ, L., POPEVIĆ, A., MEMOVIĆ, E., RADOVANOVIĆ, Z. & RESIMIĆ-ŠARIĆ, K.(2000): The Western belt of the Vardar zone the remnant of a marginal sea.– In: KARAMATA, S. & JANKOVIĆ, S. (eds.): Geology and metallogeny of the Dinarides and the Vardar zone: Zvornik, Academy of Science and Arts of Republika Srpska, 131-135.

KEENAN, J.H., KEYES, F.G., HILL, P.G. & MOORE, J.G. (1969): Steam Tables.– John Wiley, New York, 1962 p.

KOŁODZIEJCZYK, J., PRŠEK, J., MELFOS, V., VOUDOURIS, P.C., MALIQI, F. & KOZUB-BUDZYŃ, G. (2015): Bismuth minerals from the StanTerg deposit (Trepça, Kosovo).– Neues Jb. Miner. Abh., 192/3, 317- 333.

LANDTWING, M.R., DILLENBECK, E.D., LEAKE, M.H. & HEINRICH, C.A. (2002): Evolution of the breccia-hosted porphyry Cu-Mo-Au de¬posit at Agua Rica, Argentina: Progressive unroofing of a magmatic hy¬drothermal system.– Econ. Geol., 97/6, 1273-1292. doi: 10.2113/gsecon¬geo.97.6.1273

LAZAREVA, E.V., BRYANSKAYA, A.V., ZHMODIK, S.M., PONO¬MARCHUK, V.A., BARKHUTOVA, D.D. & SEMIONOVA, D.V. (2008): Carbon isotope composition in microbial mats and travertine of BRZ.– Geochim.Cosmochim.Acta, 72/12, A521.

LORENZ, V. (1973): On the formation of maars.- Bull.Volcanol., 37/2, 183–204. doi: 10.1007/BF02597130

MALO, M., MORITZ, R., DUBE, B., CHAGNON, A., ROY, F. & PELCHAT, C. (2000): Base metal skarns and Au occurrences in the southern Gaspé Appalachians: distal products of a faulted and displaced magmatic-hydro¬thermal system along the Grand Pabos-Restigouche fault system.– Econ. Geol., 95/6, 1297-1318.

McCALLUM, M.E. (1985): Experimental evidence for fluidization processes in breccia pipe formation.– Econ. Geol., 80/6, 1523–1543. doi: 10.2113/ gsecongeo.80.6.1523

MEINERT, L.D. (1992): Skarns and skarn deposits.– Geosci. Can., 19/4, 145–162.

MEINERT, L.D., DIPPLE, G.M. & NICOLESCU, S. (2005): World skarn de¬posits.– Econ. Geol. 100th Anniversary Volume, 299–336.

MILOVANOVIĆ, D., MARCHIG, V. & KARAMATA, S. (1995): Petrology of the crossite schist from Fruška Gora Mts. (Yugoslavia), relic of a sub¬ducted slab of the Tethyan oceanic crust.– J. Geodyn., 20/3, 289-304.

NANCE, W.B. & TAYLOR, S.R. (1976): Rare earth element patterns and crustal evolution: I. Australian post-Archean rocks.- Geochim. Cosmo¬chim. Acta, 40/12, 1539−1551. doi: 10.1016/0016-7037(76)90093-4

PENTECOST, A. (2005): Travertine.– Springer-Verlag, Berlin Heidelberg, 445 p.

ROBERTSON, A.H., TRIVIĆ, B., ĐERIĆ, N. & BUCUR, I.I. (2013): Tec¬tonic development of the Vardar ocean and its margins: Evidence from the Republic of Macedonia and Greek Macedonia.– Tectonophysics, 595/1, 25-54. doi: 10.1016/j.tecto.2012.07.022

ROSATELLI, G., WALL, F., STOPPA, F. & BRILLI, M. (2010): Geochemical distinctions between igneous carbonate, calcite cements, and limestone xenoliths (Polino carbonatite, Italy): spatially resolved LAICPMS analy¬ses.– Contrib. Mineral. Petr., 160/5, 645-661. doi: 10.1007/s00410-010- 0499-x

SAMSON, I.M. & WALKER, R.T. (2000): Cryogenic Raman spectroscopic studies in the system NaCl–CaCl2–H2O and implications for low-temper¬ature phase behaviour in aqueous fluid inclusions.- Can. Mineral., 38/1, 35–43.

SCHUMACHER, F. (1950): Die Lagerstätte der Trepča und ihre Umgebung.- Izdavačko Preduzeće Saveta za Energetiku i Ekstraktivnu Industriju vlade FNRJ, Beograd, 65 p.

SCHUMACHER, F. (1954): The ore deposits of Yugoslavia and the develop¬ment of its mining industry.– Econ. Geol., 49/5, 451-492.

SHARP, I.R. & ROBERTSON, A.H. (2006): Tectonic-sedimentary evolution of the western margin of the Mesozoic Vardar Ocean: evidence from the Pelagonian and Almopias zones, northern Greece.– Geological Society, London, Special Publications, 260/1, 373-412. doi: 10.1144/GSL. SP.2006.260.01.16

SILLITOE, R.H. (1985): Ore-related breccias in volcanoplutonic arcs.- Econ. Geol., 80/6, 1467–1514. doi: 10.2113/gsecongeo.80.6.1467

SILLITOE, R.H., BAKER, E.M. & BROOK, W.A. (1984): Gold deposits and hydrothermal eruption breccias associated with a maar volcano at Wau, Papua New Guinea.– Econ. Geol., 79/4, 638-655. doi: 10.2113/gsecon¬geo.79.4.638

SIMMONS, S.F. (1991): Hydrologic implications of alteration and fluid inclu¬sion studies in the Fresnillo district, Mexico: Evidence for a brine reser¬voir and a descending water table during the formation of hydrothermal Ag-Pb-Zn orebodies.– Econ. Geol., 86/8, 1579–1601. doi: 10.2113/gsec¬ongeo.86.8.1579

SIMMONS, S.F. & BROWNE, P.R.L. (1997): Saline fluid inclusions in sphal¬erite from the Broadlands-Ohaaki geothermal system: A coincidental trap¬ping of fluids being boiled toward dryness.– Econ. Geol., 92/4, 485–489. doi: 10.2113/gsecongeo.92.4.485

SIMPSON M.P., STRMIĆ PALINKAŠ S., MAUK J.L., BODNAR R.J. (2015): Fluid inclusion chemistry of adularia-sericite epithermal Au-Ag deposits of the southern Hauraki Goldfield, New Zealand. –Econ. Geol., 110/3, 763-786.

SKEWES, M.A., HOLMGREN, C. & STERN, C.R. (2003): The Donoso copper-rich, tourmaline-bearing breccia pipe in central Chile: petrologic, fluid inclusion and stable isotope evidence for an origin from magmatic fluids.– Miner. Deposita, 38/1, 2-21. doi: 10.1007/s00126-002-0264-9

SKIRROW, R.G. & WALSHE, J.L. (2002): Reduced and oxidized Au-Cu-Bi iron oxide deposits of the Tennant Creek Inlier, Australia: An integrated geologic and chemical model.– Econ. Geol., 97/6, 1167-1202. doi: 10.2113/gsecongeo.97.6.1167

STERNER, S.M., HALL, D.L. & BODNAR, R.J. (1988): Synthetic fluid in¬clusions. V. Solubility relations in the system NaCl-KCl-H2O under va¬por-saturated conditions.– Geochim. Cosmochim. Acta, 52/5, 989-1005. doi: 10.1016/0016-7037(88)90254-2

STRMIĆ PALINKAŠ, S. (2009): Genesis of hydrothermal and skarn paragen¬esis in the Pb-Zn-Ag mineral deposit Trepča (StariTrg), Kosovo.– Unpub¬lished PhD thesis, University of Zagreb, Zagreb, 143 p.

STRMIĆ PALINKAŠ, S., PALINKAŠ, L.A., MOLNAR, F. & DIEHL, M. (2007): Basic research in service of successful exploitation in Pb-Zn-Ag Stari Trg mine, Trepča, Kosovo.– In: ANDREW, C.J. (ed.): Digging deep¬er: Navan, Ireland, Irish Association for Economic Geology, 165-167.

STRMIĆ PALINKAŠ, S., BOROJEVIĆ ŠOŠTARIĆ, S., BERMANEC, V., PALINKAŠ, L., PROCHASKA, W., FURIĆ, K. & SMAJLOVIĆ, J. (2009): Dickite and kaolinite in the Pb-Zn-Ag sulphide deposits of north-ern Kosovo (Trepča and Crnac).– Clay Miner., 44/1, 67-79.

STRMIĆ PALINKAŠ, S., PALINKAŠ, L.A., RENAC, C., SPANGENBERG, J.E., LÜDERS, V., MOLNAR, F. & MALIQI, G. (2013): Metallogenic model of the Trepča Pb-Zn-Ag skarn deposit, Kosovo: evidence from fluid inclusions, rare earth elements, and stable isotope data.– Econ. Geol., 108/1, 135-162.

STRMIĆ PALINKAŠ, S., WEGNER, R., ČOBIĆ, A., PALINKAŠ, L.A., DE BRITO BARRETO, S., VÁCZI, T., BERMANEC, V. (2014): The role of magmatic and hydrothermal processes in the evolution of Be-bearing peg¬matites: Evidence from beryl and its breakdown products. -Am. Mineral., 99/2-3, 424–432.

SUDAR, M. (1986):Mikrofosili I biostratigrafija trijasaunutrašnjih Dinarida između Gučeva I Ljubišnje (Triassic microfossils and biostratigraphy of the Inner Dinarides between Gučevo and Ljubišnja Mts., Yugoslavia; in Serbian with English summary).– Geol. An. Balk.Poluos., 50, 151-394.

SUDAR, M. & KOVACS, S. (2006): Metamorphosed and ductilely deformed conodonts from Triassic limestones situated beneath ophiolite complexes: Kopaonik Mountain (Serbia) and Bükk Mountains (NE Hungary)–a pre¬liminary comparison.– Geol.Carpath., 57/3, 157−176.

TAMAS, C.G. & MILESI, J.-P. (2002): Hydrovolcanic breccia pipe struc¬tures-General features and genetic criteria. I. Phreatomagmatic breccias.- Studia UBB Geologia, 47/1, 127-147.

TERZIĆ, S.B., SOMMERAUER, J. &HARNIK, A.B. (1974): Macroscopic cosalite crystals from the Pb-Zn ore deposit Trepča (Yugoslavia).- Sch¬weiz. Mineral. Petrogr. Mitt., 54/1, 209-211.

TOOTH, B., ETSCHMANN, B., POKROVSKI, G.S., TESTEMALE, D., HAZEMANN, J.-L., GRUNDLER, P.V. & BRUGGER, J. (2013): Bis¬muth speciation in hydrothermal fluids: An X-ray absorption spectrosco¬py and solubility study.– Geochim. Cosmochim. Acta, 101/1, 156-172. doi: 10.1016/j.gca.2012.10.020

TORNOS, F., CASQUET, C., GALINDO, C., VELASCO, F. & CANALES, A. (2001): A new style of Ni-Cu mineralization related to magmatic brec¬cia pipes in a transpressional magmatic arc, Aguablanca, Spain.– Miner. Deposita, 36/7, 700–706. doi: 10.1007/s001260100204

TRUMBULL, R.B., SLACK, J.F., KRIENITZ, M.S., BELKIN, H.E. & WIE¬DENBECK, M. (2011): Fluid sources and metallogenesis in the Blackbird Co–Cu–Au–Bi–Y–REE district, Idaho, USA: insights from major-ele¬ment and boron isotopic compositions of tourmaline.– Can. Mineral., 49/1, 225-244.

VASKOVIĆ, N. & MATOVIĆ, V. (2010): Ophiolites of the Vardar Zone and the Dinarides: Central and West Serbia.– IMA 2010 field trip guide RS1. Department of Mineralogy, Geochemistry and Petrology, University of Szeged, 55 p.

VEIZER, J.D. & HOEFS, J. (1976): The nature of 18O/16O and 13C/12C secular trends in sedimentary carbonate rocks.– Geochim. Cosmochim. Acta, 40/11, 1387–1395.

VESELINOVIC-WILLIAMS, M. (2011): Characteristics and origin of poly¬metallic mineralisation in the Kopaonik region of Serbia and Kosovo, with particular reference to the Belo Brdo Pb-Zn (Ag) deposit.– Unpub¬lished PhD thesis, Kingston University, London, 150 p.

VRY, V.H., WILKINSON, J.J., SEGUEL, J. & MILLÁN, J. (2010): Multi¬stage intrusion, brecciation, and veining at El Teniente, Chile: Evolution of a nested porphyry system.– Econ. Geol., 105/1, 119-153. doi: 10.2113/ gsecongeo.105.1.119

WALLIER S, REY R, KOUZMANOV K, PETTKE T, HEINRICH CA, LEARY S, O’CONNOR G, TĂMAŞ CG, VENNEMANN T, ULLRICH T (2006): Magmatic fluids in the breccia-hosted epithermal Au-Ag de¬posit of Roşia Montană, Romania.– Econ. Geol., 101/5, 923-954.

YANG, K.& BODNAR, R.J. (1994): Why is economic porphyry copper min¬eralization absent from the granitoids of the Gyeongsang Basin, South Korea? Evidence from silicate melt and aqueous fluid inclusions.– Int. Geol. Rev., 36/7, 608-628.

ZELIĆ, M., AGOSTINI, S., MARRONI, M., PANDOLFI, L. & TONARINI, S. (2010): Geological and geochemical features of the Kopaonik intrusive complex (Vardar zone, Serbia).– Ofioliti, 35/1, 33-47.

ZHENG, Y.F. (1999): Oxygen isotope fractionation in carbonate and sulfate minerals.- Geochem. J., 33, 109–126. doi: 10.2343/geochemj.33.109

ZHENG, Y.F. & HOEFS, J. (1993): Carbon and oxygen isotopic covariations in hydrothermal calcites.– Miner. Deposita, 28/2, 79–89. doi: 10.1007/BF00196332