Sm-Nd geochronology and petrologic investigation of sub-ophiolite metamorphic sole from the Dinarides (Krivaja-Konjuh, Ophiolite Complex, Bosnia and Herzegovina)

Main Article Content

Branimir Šegvić
Damir Slovenec
Ralf Schuster
Elvir Babajić
Luka Badurina
† Boško Lugović


The Dinaridic segment of Neotethys was affected by a widespread shortening and related subduction-accretion-obduction processes that commenced in the middle Jurassic. In the Dinarides, the Krivaja-Konjuh Ophiolite Complex (KKOC) stands as the largest ophiolite complex with a well-exposed metamorphic sole which is the key to understanding the dynamics of intraoceanic subduction initiation in this part of Neotethys. In this contribution we present Sm-Nd geochronology on a granulite facies amphibolite from the KKOC, as well as a detailed petrological description. A five-point isochrone age calculated from clinopyroxene, plagioclase, garnet, amphibole and whole rock is 162 ± 14 Ma (MSWD = 6.2), whereas garnet and whole rock yield 160 ± 7 Ma. Ages calculated from all data points except clinopyroxene are 162 ± 5 Ma (MSWD = 1.09). Petrographic investigations suggest that these ages date granulite facies metamorphic conditions (i.e. peak metamorphism of Grt-Cpx amphibolite) rather than post-peak exhumation or obduction processes. Phase textural relationships are in line with previous research, which indicated a peak metamorphism equilibration pressure and temperature of ~1 GPa and ~800 °C, respectively. Granulite facies conditions are elucidated for an igneous precursor, which underwent a multi-stage metamorphism that gave rise to recrystallization of igneous clinopyroxene and plagioclase, epitaxial growth of amphibole, and garnet blastosis. Taking into account the age of gabbronorite from the youngest segment of the KKOC oceanic crust (Taorcian to Bathonian) and ages of radiolarian assemblages from the KKOC mélange (Bajocian to Bathonian), it may be inferred that within ~25 Ma the Dinaridic segment of Neotethys evolved rapidly from active ridge spreading through a stage of intraoceanic subduction and arc magmatism toward sub-ophiolite
exhumation and further obduction along the Adria passive margin at the end of the Jurassic era.


Download data is not yet available.

Article Details

Original Scientific Papers


BABAJIĆ, E. (2009): Petrološko-geohemijska obilježja mafitnih stijena Krivajsko-konjuškog ofiolitnog kompleksa [Petrological and geochemical characteristic of mafic rocks from the Krivanja-Konjuh ophiolitic complex - in Bosnian, with an English Abstract].– PhD Thesis, University of Tuzla, 158 p.
BAXTER, E., CADDICK, M. & DRAGOVIĆ, B. (2017): Garnet: A rock-forming mineral petrochronometer.– Rev. Mineral. Geochem., 83, no. 1, 469-533.
BÉBIEN, J., DIMO-LAHITTE, A., VERGÉLY, P., INSERGUEIX-FILIPPI, D. & DUPEYRAT, L. (2000): Albanian ophiolites. I - Magmatic and metamorphic processes associated with the initiation of a subduction.– Ofioliti, 25, 39-45. doi:10.4454/ofioliti.v25i1.112
BOROJEVIĆ SOSTARIĆ, S., PALINKAŠ, A. L., NEUBAUER, F., CVETKOVIĆ, V., BERNROIDER, M. & GENSER, J. (2014): The origin and age of the metamorphic sole from the Rogozna Mts., Western Vardar Belt: New evidence for the one-ocean model for the Balkan ophiolites.– Lithos, 192-195, 39-55. doi:10.1016/j.lithos.2014.01.011
BORTOLOTTI, V., CHIARI, M., MARRONI, M., PANDOLFI, L., PRINCIPI, G. & SACCANI, E. (2013): Geodynamic evolution of ophiolites from Albania and Greece (Dinaric-Hellenic belt): one, two, or more oceanic basins?– Int. J. Earth Sci., 102, 783-811. doi:10.1007/s00531-012-0835-7
BRANDT, S., KLEMD, R. & OKRUSCH, M. (2003): Ultrahigh-Temperature Metamorphism and Multistage Evolution of Garnet–Orthopyroxene Granulites from the Proterozoic Epupa Complex, NW Namibia.– J. Petrol., 44, 1121-1144. doi:10.1093/petrology/44.6.1121
BUCHER, K. & FREY, M. (2002): Petrogenesis of Metamorphic Rocks.– Springer-Verlag, Berlin, Heidelberg, 341 p.
ÇELIK, Ö. F. & DELALOYE, M. F. (2006): Characteristics of ophiolite-related metamorphic rocks in the Beysehir ophiolitic mélange (Central Taurides, Turkey), deduced from whole rock and mineral chemistry.– J. Asian Earth Sci., 26, 461-476. doi:10.1016/j.jseaes.2004.10.008
CHENG, H., ZHANG, C., VERVOORT, J. D., LI, X., LI, Q., ZHENG, S. & CAO, D. (2011): Geochronology of the transition of eclogite to amphibolite facies metamorphism in the North Qinling orogen of central China.– Lithos, 125, 969-983. doi:10.1016/j.lithos.2011.05.010
CHENG, H. A. O. (2019): Garnet lu–hf and sm–nd geochronology: A time capsule of the metamorphic evolution of orogenic belts.– Geol. Soc. Spec. Pub., 474, 47-67. doi:10.1144/SP474.7
Maljen area (Western Serbia): A geotraverse across the ophiolites of the Dinaric-Hellenic collisional belt.– Ofioliti, 36, 139-166. doi:10.4454/OFIOLITI.V36.I2.3
CVETKOVIĆ, V., ŠARIĆ, K., GRUBIĆ, A., CVIJIĆ, R. & MILOŠEVIĆ, A. (2014): The upper cretaceous ophiolite of north kozara-remnants of an anomalous mid-ocean ridge segment of the neotethys.– Geol. Carpath., 65, 117-130. doi:10.2478/geoca-2014-0008
D'EL-REY SILVA, L. J. H., DANTAS, E. L., TEIXEIRA, J. B. G., LAUX, J. H. & DA SILVA, M. D. G. (2007): U–Pb and Sm–Nd geochronology of amphibolites from the Curaçá Belt, São Francisco Craton, Brazil: Tectonic implications.– Gondwana Res., 12, 454-467. doi:10.1016/
DILEK, Y. & FLOWER, M. F. J. (2003): Arc-trench rollback and forearc accretion: 2. A model template for ophiolites in Albania, Cyprus, and Oman.– Geol. Soc. Spec. Publ., 218, 43-68. doi:10.1144/GSL.SP.2003.218.01.04
DILEK, Y. & FURNES, H. (2019): Tethyan ophiolites and Tethyan seaways.– J. Geol. Soc., 176, 899-912. doi:10.1144/jgs2019-129
DIMITRIJEVIĆ, M. D. & DIMITRIJEVIĆ, M. N. (1973): Olistostrome Mélange in the Yugoslavian Dinarides and Late Mesozoic Plate Tectonics.– The Journal of Geology, 81, 328-340.
ĐORĐEVIĆ, D. & PAMIĆ, J. (1972): Petrološki izvještaj za osnovnu geološku kartu, list Vlasenica [Basic Geological Map of SFRY 1:100000, Vlasenica sheet – in Serbo-Croatian].– Federal Geological Survey, Sarajevo, Belgrade.
DRAGOVIC, B., BAXTER, E. F. & CADDICK, M. J. (2015): Pulsed dehydration and garnet growth during subduction revealed by zoned garnet geochronology and thermodynamic modeling, Sifnos, Greece.– Earth Planet. Sci. Lett., 413, 111-122. doi:10.1016/j.epsl.2014.12.024
DUBACQ, B., SORET, M., JEWISON, E. & AGARD, P. (2019): Early subduction dynamics recorded by the metamorphic sole of the Mt. Albert ophiolitic complex (Gaspé, Québec).– Lithos, 334-335, 161-179. doi:10.1016/j.lithos.2019.03.019
DUTCH, R. & HAND, M. (2010): Retention of Sm-Nd isotopic ages in garnets subjected to high-grade thermal reworking: Implications for diffusion rates of major and rare earth elements and the Sm-Nd closure temperature in garnet.– Contrib. Mineral. Petrol., 159, 93-112. doi:10.1007/s00410-009-0418-1
ELITOK, Ö. & DRÜPPEL, K. (2008): Geochemistry and tectonic significance of metamorphic sole rocks beneath the Beyşehir-Hoyran ophiolite (SW-Turkey).– Lithos, 100, 322-353. doi:10.1016/j.lithos.2007.06.022
ERNST, W. G. & LIU, J. (1998): Experimental phase-equilibrium study of Al- and Ti-contents of calcic amphibole in MORB; a semiquantitative thermobarometer.– Am. Mineral., 83, 952-969. doi:10.2138/am-1998-9-1004
FAUL, U. H., GARAPIĆ, G. & LUGOVIĆ, B. (2014): Subcontinental rift initiation and ocean-continent transitional setting of the Dinarides and Vardar zone: Evidence from the Krivaja–Konjuh Massif, Bosnia and Herzegovina.– Lithos, 202–203, 283-299. doi:10.1016/j.lithos.2014.05.026
FERRIÈRE, J., CHANIER, F. & DITBANJONG, P. (2012): The Hellenic ophiolites: eastward or westward obduction of the Maliac Ocean, a discussion.– Int. J. Earth Sci., 101, 1559-1580. doi:10.1007/s00531-012-0797-9
FLOWER, R. M., BOWRING, S. A., TULLOCH, A. J. & KLEPEIS, K. A. (2005): Tempo of burial and exhumation within the deep roots of a magmatic arc, Fiordland, New Zealand.– Geology, 33, 17-20. doi:10.1130/G21010.1
GAGGERO, L., MARRONI, M., PANDOLFI, L. & BUZZI, L. (2009): Modeling the oceanic lithosphere obduction: Constraints from the metamorphic sole of Mirdita ophiolites (northern Albania).– Ofioliti, 34, 17-42. doi:10.4454/ofioliti.v34i1.376
GARTZOS, E., DIETRICH, V. J., MIGIROS, G., SERELIS, K. & LYMPEROPOULOU, T. (2009): The origin of amphibolites from metamorphic soles beneath the ultramafic ophiolites in Evia and Lesvos (Greece) and their geotectonic implication.– Lithos, 108, 224-242. doi:10.1016/j.lithos.2008.09.013
GJATA, K., KORNPROBST, J., KODRA, A., BRIOT, D. & PINEAU, F. (1992): Subduction chaude à l'aplomb d'une dorsale? Exemple des enclaves de pyroxenite à grenat de la breche serpentineuse de Derveni (Albanie).– Bull. Soc. Geol. Fr., 163, 469-476.
GROPPO, C., ROLFO, F., LIU, Y.-C., DENG, L.-P. & WANG, A.-D. (2015): P-T evolution of elusive UHP eclogites from the Luotian dome (North Dabie Zone, China): How far can the thermodynamic modeling lead us?– Lithos, 226, 183-200. doi:10.1016/j.lithos.2014.11.013
GUILMETTE, C., HÉBERT, R., DUPUIS, C., WANG, C. & LI, Z. (2008): Metamorphic history and geodynamic significance of high-grade metabasites from the ophiolitic mélange beneath the Yarlung Zangbo ophiolites, Xigaze area, Tibet.– J. Asian Earth Sci., 32, 423-437. doi:10.1016/j.jseaes.2007.11.013
HACKER, B. R. & MOSENFELDER, J. L. (1996): Metamorphism and deformation along the emplacement thrust of the Samail ophiolite, Oman.– Earth Planet. Sci. Lett., 144, 435-451. doi:10.1016/S0012-821X(96)00186-0
HARLEY, S. L. (1989): The origins of granulites: a metamorphic perspective.– Geol. Mag., 126, 215-247. doi:10.1017/S0016756800022330
HARLOV, D., TROPPER, P., SEIFERT, W., NIJLAND, T. & FÖRSTER, H.-J. (2006): Formation of Al-rich titanite (CaTiSiO4O–CaAlSiO4OH) reaction rims on ilmenite in metamorphic rocks as a function of fH2O and fO2.– Lithos, 88, 72-84. doi:10.1016/j.lithos.2005.08.005
HÄSSIG, M., ROLLAND, Y., MELIS, R., SOSSON, M., GALOYAN, G. & BRUGUIER, O. (2019): P-T-T history of the amasia and stepanavan sub-ophiolitic metamorphic units (Nw Armenia, lesser caucasus): Implications for metamorphic sole development and for the obduction process.– Ofioliti, 44, 43-70. doi:10.4454/ofioliti.v44i1.464
HRVATOVIĆ, H. (2006): Geološki vodić kroz Bosnu i Hercegovinu.–, 203.
HWANG, S. L., YUI, T. F., CHU, H. T., SHEN, P., SCHERTL, H. P., ZHANG, R. Y. & LIOU, J. G. (2007): On the origin of oriented rutile needles in garnet from UHP eclogites.– J. Metamorph. Geol., 25, 349-362. doi:10.1111/j.1525-1314.2007.00699.x
JOVANOVIĆ, R. (1961): Prilog poznavanju prostranstva i facija mezozoika "Unutrašnje zone Dinarida" u NR BiH.– IIIème congrès des geologues de Yugoslavie, L'union des sociétés geologiques de la RFP de Yugoslavie, 148-176.
JUNG, S. & MEZGER, K. (2001): Geochronology in migmatites – a Sm– Nd, U–Pb and Rb–Sr study from the Proterozoic Damara belt (Namibia): implications for polyphase development of migmatisation in high-grade terranes. – J. Metamorph. Geol., 19, 77-97. doi: 10.1046/j.0263-4929.2000.00297.x
KAKAR, M. I., MAHMOOD, K., KHAN, M. & PLAVSA, D. (2015): Petrology and geochemistry of amphibolites and greenschists from the metamorphic sole of the Muslim Bagh ophiolite (Pakistan): implications for protolith and ophiolite emplacement.– Arab. J. Geosci., 8, 6105-6120. doi:10.1007/s12517-014-1613-6
KARAMATA, S. (1968): Zonality in contact metamorphic rocks around the ultramafic mass of Brezovica (Serbia, Yugoslavia).–Proceedings 23th International Geological Congress, 1, 197-207.
KRETZ, R. (1983): Symbols for rock-forming minerals.– Am. Mineral., 68, no. 1-2, 277-279.
KYDONAKIS, K., BRUN, J.-P., POUJOL, M., MONIÉ, P. & CHATZITHEODORIDIS, E. (2016): Inferences on the Mesozoic evolution of the North Aegean from the isotopic record of the Chalkidiki block.– Tectonophysics, 682, 65-84. doi:10.1016/j.tecto.2016.06.006
LANPHERE, M. A., COLEMAN, R. G., KARAMATA, S. & PAMIĆ, J. (1975): Age of amphibolites associated with alpine peridotites in the Dinaride ophiolite zone, Yugoslavia.– Earth Planet. Sci. Lett., 26, 271-276. doi:10.1016/0012-821X(75)90001-1
LÁZARO, C., BLANCO-QUINTERO, I. F., ROJAS-AGRAMONTE, Y., PROENZA, J. A., NÚÑEZ-CAMBRA, K. & GARCÍA-CASCO, A. (2013): First description of a metamorphic sole related to ophiolite obduction in the northern Caribbean: Geochemistry and petrology of the Güira de Jauco Amphibolite complex (eastern Cuba) and tectonic implications.– Lithos, 179, 193-210. doi:10.1016/j.lithos.2013.08.019
LUDWIG, K. R. (2003): Isoplot 3.00: A geochronological toolkit for Microsoft Excel.– Berkeley Geochronology Center Special Publication, 4, 70.
LUGOVIĆ, B., ALTHERR, R., RACZEK, I., HOFMANN, A. W. & MAJER, V. (1991): Geochemistry of peridotites and mafic igneous rocks from the Central Dinaric Ophiolite Belt, Yugoslavia.– Contrib. Mineral. Petrol., 106, 201-216. doi:10.1007/BF00306434
MAJER, V. & LUGOVIĆ, B. (1985): Metamorphic rocks from the Ophiolite zone in Banija, Yugoslavia: amphibolites.– Acta Geologica Zagreb, 15, 1-25.
MAKSIMOVIĆ, Z. & MAJER, V. (1981): Accessory spinels of two main zones of Alpine ultramafic rocks in Yugoslavia.– Bulletin de l'Académie Serbe des Sciences et des Arts, 21, 13-26.
MEINHOLD, G., ANDERS, B., KOSTOPOULOS, D. & REISCHMANN, T. (2008): Rutile chemistry and thermometry as provenance indicator: An example from Chios Island, Greece.– Sediment. Geol., 203, 98-111. doi:10.1016/j.sedgeo.2007.11.004
MEZGER, K., ESSENE, E. J. & HALLIDAY, A. N. (1992): Closure temperatures of the Sm—Nd system in metamorphic garnets.– Earth Planet. Sci. Lett., 113, 397-409. doi:10.1016/0012-821X(92)90141-H
MOAZZEN, M. & OBERHÄNSLI, R. (2008): Whole rock and relict igneous clinopyroxene geochemistry of ophiolite-related amphibolites from NW Iran Implications for protolith nature.– Neus Jb. Miner. Abh., 185, 51-62. doi:10.1127/0077-7757/2008/0106
MUKHOPADHYAY, B. & BOSE, M. K. (1994): Transitional granulite-eclogite facies metamorphism of basic supracrustal rocks in a shear zone complex in the Precambrian shield of South India.– Mineral. Mag., 58, 97-118.
MULDER, J. A., BERRY, R. F., MEFFRE, S. & HALPIN, J. A. (2016): The metamorphic sole of the western Tasmanian ophiolite: New insights into the Cambrian tectonic setting of the Gondwana Pacific margin.– Gondwana Res., 38, 351-369. doi:10.1016/
MURPHY, J. B. (2006): Igneous Rock Associations 7. Arc Magmatism I: Relationship Between Subduction and Magma Genesis.– Geosci. Can., 33, 145-167.
OPERTA, M., PAMIĆ, J., BALEN, D. & TROPPER, P. (2003): Corundum-bearing amphibolites from the metamorphic basement of the Krivaja–Konjuh ultramafic massif (Dinaride Ophiolite Zone, Bosnia).– Mineral. Petrol., 77, 287-295. doi:10.1007/s007100300002
PAMIĆ, J. (1968): Petrološki izvještaj za tumač lista Zavidovići, osnovne geološke karte SFRJ [Basic Geological Map of SFRY 1:100000, Zavidovići sheet – in Serbo-Croatian].– Federal Geological Survey, Sarajevo, Belgrade.
PAMIC, J. (1970): Petrološki izvještaj za tumač lista Vareš, osnovne geološke karte SFRJ [Basic Geological Map of SFRY 1:100000, Vareš sheet – in Serbo-Croatian].– Federal Geological Survey, Sarajevo, Belgrade.
PAMIĆ, J., GUŠIĆ, I. & JELASKA, V. (1998): Geodynamic evolution of the Central Dinarides.– Tectonophysics, 297, 251-268. doi:10.1016/S0040-1951(98)00171-1
PAMIĆ, J. & HRVATOVIĆ, H. (2000): Dinaride Ophiolite Zone (DOZ). Basic data on the geology and petrology of the Krivaja-Konjuh ophiolite complex. Pancardi 2000 fieldtrip guidebook.– Vijesti Hrvatskoga geološkog društva, 37, 60-68.
PAMIĆ, J. & HRVATOVIĆ, H. (2003): Main large thrust structures in the Dinarides - a proposal for their classification.– Nafta, 54, 443-464.
PAMIĆ, J., SUNARIĆ-PAMIĆ, O., OLUJIĆ, J. & ANTIĆ, R. (1977): Petrografija i petrologija krivajsko-konjuškog ofiolitskog kompleksa i njegove osnovne geološke karakteristike: Geology, petrography, and petrology of the Krivaja-Konjuh ophiolite complex in the central part of the Dinarides, Yugoslavia.– Acta Geologica Zagreb, 9, 59-135.
PAMIĆ, J., TOMLJENOVIĆ, B. & BALEN, D. (2002): Geodynamic and petrogenetic evolution of Alpine ophiolites from the central and NW Dinarides: an overview.– Lithos, 65, 113-142. doi:10.1016/S0024-4937(02)00162-7
PARLAK, O. (2016): The tauride ophiolites of Anatolia (Turkey): A review.– J. Earth Sci., 27, 901-934. doi:10.1007/s12583-016-0679-3
PATTISON, D. R. M., CHACKO, T., FARQUHAR, J. & MCFARLANE, C. R. M. (2003): Temperatures of Granulite-facies Metamorphism: Constraints from Experimental Phase Equilibria and Thermobarometry Corrected for Retrograde Exchange.– J. Petrol., 44, 867-900. doi:10.1093/petrology/44.5.867
PLOTNIKOV, A. V., KRUK, N. N., VLADIMIROV, A. G., KOVACH, V. P., ZHURAVLEV, D. Z. & MOROZ, E. N. (2003): Sm-Nd isotope systematics of metamorphic rocks in the Western Altai-Sayan fold belt.– Dokl. Earth Sci., 388, 63-67.
POMONIS, P., TSIKOURAS, B. & HATZIPANAGIOTOU, K. (2002): Origin, evolution and radiometric dating of subophiolitic metamorphic rocks from the Koziakas ophiolite (W. Thessaly, Greece).– Neus Jb. Miner. Abh., 177, 255-276. doi:10.1127/0077-7757/2002/0177-0255
PRAKASH, D., ARIMA, M. & MOHAN, A. (2007): Ultrahigh-temperature mafic granulites from Panrimalai, south India: Constraints from phase equilibria and thermobarometry.– J. Asian Earth Sci., 29, 41-61. doi:10.1016/j.jseaes.2006.01.002
RAO, C. V. D. & CHMIELOWSKI, R. M. (2011): New constraints on the metamorphic evolution of the Eastern Ghats Belt, India, based on relict composite inclusions in garnet from ultrahigh-temperature sapphirine granulites.– Geol. J., 46, 240-262. doi:10.1002/gj.1251
ROBERTSON, A. (2002): Overview of the genesis and emplacement of Mesozoic ophiolites in the Eastern Mediterranean Tethyan region. Lithos, 65, 1–67.
ROBERTSON, A. (2004): Development of concepts concerning the genesis and emplacement of Tethyan ophiolites in the Eastern Mediterranean and Oman regions.– Earth-Sci. Rev., 66, 331-387. doi:10.1016/j.earscirev.2004.01.005
ROBERTSON, A., KARAMATA, S. & ŠARIĆ, K. (2009a): Overview of ophiolites and related units in the Late Palaeozoic–Early Cenozoic magmatic and tectonic development of Tethys in the northern part of the Balkan region.– Lithos, 108, 1-36. doi:10.1016/j.lithos.2008.09.007
ROBERTSON, A. H. F. & KARAMATA, S. (1994): The role of subduction-accretion processes in the tectonic evolution of the Mesozoic Tethys in Serbia.– Tectonophysics, 234, 73-94. doi:10.1016/0040-1951(94)90205-4
ROBERTSON, A. H. F., KARAMATA, S. & ŠARIĆ, K. (2009b): Ophiolites and related geology of the Balkan region.– Lithos, 108, vii-x. doi:10.1016/j.lithos.2008.10.013
ROMER, R. L. & RÖTZLER, J. (2011): The role of element distribution for the isotopic dating of metamorphic minerals.– Eur. J. Mineral., 23, 17-33. doi:10.1127/0935-1221/2011/0023-2081
SACCANI, E., BECCALUVA, L., PHOTIADES, A. & ZEDA, O. (2011): Petrogenesis and tectono-magmatic significance of basalts and mantle peridotites from the Albanian–Greek ophiolites and sub-ophiolitic mélanges. New constraints for the Triassic–Jurassic evolution of the Neo-Tethys in the Dinaride sector.– Lithos, 124, 227-242. doi:10.1016/j.lithos.2010.10.009
SARIFAKIOǦLU, E., ÖZEN, H., ÇOLAKOǦLU, A. & SAYAK, H. (2010): Petrology, mineral chemistry, and tectonomagmatic evolution of Late Cretaceous suprasubduction-zone ophiolites in the Izmir-Ankara-Erzincan suture zone, Turkey.– Int. Geol. Rev., 52, 187-222. doi:10.1080/00206810902818479
SCHMID, S. M., BERNOULLI, D., FÜGENSCHUH, B., MATENCO, L., SCHEFER, S., SCHUSTER, R., TISCHLER, M. & USTASZEWSKI, K. (2008): The Alpine-Carpathian-Dinaridic orogenic system: correlation and evolution of tectonic units.– Swiss J. Geosci., 101, 139-183. doi:10.1007/s00015-008-1247-3
ŠEGVIĆ, B. (2010): Petrologic and geochemical characteristics of the Krivaja-Konjuh ophiolite complex (NE Bosnia and Herzegovina) - petrogenesis and regional geodynamic implications - in English, with German summary.– PhD Thesis, University of Heidelberg, Heidelberg, 310 p.
ŠEGVIĆ, B., KUKOČ, D., DRAGIČEVIĆ, I., VRANJKOVIĆ, A., BRČIĆ, V., GORIČAN, Š., BABAJIĆ, E. & HRVATOVIĆ, H. (2014): New record of Middle Jurassic radiolarians and evidence of Neotethyan dynamics documented in a mélange from the Central Dinaridic Ophiolite Belt (CDOB, NE Bosnia and Herzegovina).– Ofioliti; 39, 33-43. doi:10.4454/ofioliti.v39i1.427
ŠEGVIĆ, B., LUGOVIĆ, B., SLOVENEC, D. & MEYER, H.-P. (2016): Mineralogy, petrology and geochemistry of amphibolites from the Kalnik Mt. (Sava Unit, North Croatia): Implications for the evolution of north-westernmost part of the Dinaric-Vardar branch of Mesozoic Tethys.– Ofioliti, 41, 35-58. doi:10.4454/ofioliti.v41i1.441
ŠEGVIĆ, B., SLOVENEC, D., ALTHERR, R., BABAJIĆ, E., MÄHLMANN, R. F. & LUGOVIĆ, B. (2019): Petrogenesis of high-grade metamorphic soles from the Central Dinaric Ophiolite belt and their significance for the Neotethyan evolution in the Dinarides.– Ofioliti, 44, 1-30. doi:10.4454/ofioliti.v44i1.462
SEO, J., CHOI, S. G., OH, C. W., KIM, S. W. & SONG, S. H. (2005): Genetic Implications of Two Different Ultramafic Rocks from Hongseong Area in the Southwestern Gyeonggi Massif, South Korea.– Gondwana Res., 8, 539-552. doi:10.1016/S1342-937X(05)71154-0
SLOVENEC, D. & LUGOVIĆ, B. (2009): Geochemistry and tectono-magmatic affinity of mafic extrusive and dyke rocks from the ophiolite melange of the SW Zagorje-Mid-Transdanubian Zone (mt. Medvednica, Croatia).– Ofioliti; 34, 63-80. doi:10.4454/ofioliti.v34i1.378
SÖLVA, H., GRASEMANN, B., THÖNI, M., THIEDE, R. & HABLER, G. (2005): The Schneeberg Normal Fault Zone: Normal faulting associated with Cretaceous SE-directed extrusion in the Eastern Alps (Italy/Austria).– Tectonophysics, 401, 143-166. doi:10.1016/j.tecto.2005.02.005
SREĆKOVIĆ-BATOĆANIN, D., MILOVANOVIĆ, D. & BALOGH, K. (2002): Petrology of the Garnet Amphibolites from the Tejići Village - Povlen Mt., Western Serbia.– Geološki anali balkanskog poluostrva, 64, 187-198.
ŠUICA, S., LUGOVIĆ, B. & KUKOČ, D. (2018): Tectono-magmatic significance of the pillow basalts from the ophiolitic mélange of the Dinarides.– Ofioliti, 43, 85-101. doi:10.4454/ofioliti.v43i1.506
TAMASHIRO, I., SANTOSH, M., SAJEEV, K., MORIMOTO, T. & TSUNOGAE, T. (2004): Multistage orthopyroxene formation in ultrahigh-temperature granulites of Ganguvarpatti, southern India: implications for complex metamorphic evolution during Gondwana assembly.– J. Mineral. Petrol. Sci., 99, 279-297. doi:10.2465/jmps.99.279
TARI, V. (2002): Evolution of the northern and western Dinarides: a tectonostratigraphic approach.– EGU Stephan Mueller Special Publication Series, 1, 223-236.
THÖNI, M. (2002): Sm-Nd isotope systematics in garnet from different lithologies (Eastern Alps): age results, and an evaluation of potential problems for garnet Sm-Nd chronometry. – Chem. Geol., 185, 255-281. doi: 10.1016/S0009-2541(01)00410-7
TREMBLAY, A., MESHI, A., DESCHAMPS, T., GOULET, F. & GOULET, N. (2015): The Vardar zone as a suture for the Mirdita ophiolites, Albania: Constraints from the structural analysis of the Korabi-Pelagonia zone.– Tectonics, 34, 352-375. doi:10.1002/2014TC003807
TRUBELJA, F., MARCHIG, V., BURGATH, K. P. & VUJOVIĆ, Ž. (1995): Origin of the Jurassic Tethyan Ophiolites in Bosnia: A Geochemical Approach to Tectonic Setting.– Geol, Croat,, 48, 49-66.
WAKABAYASHI, J. & DILEK, Y. (2000): Spatial and temporal relationships between ophiolites and their metamorphic soles: A test of models of forearc ophiolite genesis.– Geol. S. Am. S., 349, 53-64.
WAKABAYASHI, J. & DILEK, Y. (2003): What constitutes ‘emplacement’ of an ophiolite?: Mechanisms and relationship to subduction initiation and formation of metamorphic soles.– Geol. Soc. Spec. Publ., 218, 427-447. doi:10.1144/GSL.SP.2003.218.01.22
WANG, D., VERVOORT, J. D., FISHER, C. M., CAO, H. & LI, G. (2019): Integrated garnet and zircon–titanite geochronology constrains the evolution of ultra-high–pressure terranes: An example from the Sulu orogen.– J. Metamorph. Geol., 37, 611-631. doi:10.1111/jmg.12477
WOLF, M. B. & WYLLIE, P. J. (1994): Dehydration-melting of amphibolite at 10 kbar: the effects of temperature and time.– Contrib. Mineral. Petrol., 115, 369-383. doi:10.1007/BF00320972
XU, B., CHEN, B., ZHANG, C., BAI, Z., WANG, H. & ZHANG, Q. (1994): Sm-Nd isochron and significance of the Wuhuaoubao block in northern margin of Sino-Korean Plate.– Sci. Geol. Sin., 29, 168-172.