Geochemistry of the Görcsöny Ridge amphibolites (Tisza Unit, SW Hungary) and its geodynamic consequences

Main Article Content

Tivadar M. Toth

Abstract

The Görcsöny Ridge is part of the complicated Variscan metamorphic basement of the SW Tisza plate. It was penetrated by several wells, one of which (Baksa-2) explored 1200 m borecore available for petrological examination. Amphibolite samples of this core are of two different sorts: one sort contains biotite, rutile, and garnet, while the other contains ilmenite and is free of garnet. The two rock types occur separately along the borehole, defining a lower and an upper unit (LU, UU). Based on their major and trace element compositions, LU samples are within-plate (WP) tholeiites which assimilated pelagic sediments, while those of the UU represent WP alkali basalts. Thermobarometric calculations suggest that the difference in chemical composition itself does not explain the above differences in mineralogy, so the two units must also differ in their metamorphic histories. Consequently, the crystalline basement of the Görcsöny Ridge possibly consists of amalgamated fragments of different origins and evolutions which became juxtaposed during the Variscan collisional orogeny.

Downloads

Download data is not yet available.

Article Details

Section
Original Scientific Papers
Author Biography

Tivadar M. Toth, University of Szeged, Department of Mineralogy, Geochemistry and Petrology

References

ÁRKAI, P. (1984): Polymetamorphism of the crystalline basement of the Somogy-Dráva Basin (Southwestern Transdanubia, Hungary). – Acta Miner. Petr, Szeged XXVI, 129–153.

ÁRKAI, P., NAGY, G. & DOBOSI, G. (1985): Polymetamorphic evolution of the South Hungarian crystalline basement, Pannonian Basin: geothermometric and geobarometric data. – Acta Geologica Hungarica 28, 165–190.

ÁRKAI, P., HORVÁTH, P. & NAGY, G. (1999): A clockwise P-T path from the Variscan Basement of the Tisza Unit, Pannonian Basin, Hungary. – Geologica Croatia 52/2, 109–117.

ÁRKAI, P. & NAGY, G. (1994): Tectonic and magmatic effects on amphibole chemistry in mylonitized amphibolites and amphibole-bearing enclaves associated with granitoid rocks, Mecsek Mountains, Hungary. – Acta Geologica Hungarica 37/3–4, 235–268.

BALEN, D., HORVÁTH, P., TOMLJENOVIC, B., FINGER, F., HUMER, B., PAMIĆ, J. & ÁRKAI, P. (2006): A record of pre-Variscan Barrovian regional metamorphism in the eastern part of the Slavonian Mountains (NE Croatia). – Mineralogy and Petrology, 87, 143–162.

BALLA, Z. (1983): A dél-dunántúli ultrabázitok lemeztektonikai értelmezése. (Plate tectonic interpretation of ultrabasites in Southern Transdanubia. in Hungarian) – Földtani Közlöny 113, 39–56.

BALLA, Z. & GYALOG, L. (eds.) (2009): Geology of the North-eastern Part of the Mórágy Block: Explanatory Notes to the Geological Map-series of the North-eastern Part of the Mórágy Block (1:10 000). – MÁFI, Budapest, pp. 283.

BARBOSA, J., NICOLLET, C., LEITE, C., KIENAST, J.R., FUCK, R.A. & MACEDO, E.P. (2006): Hercynite–quartz-bearing granulites from Brejões Domearea, Jequié Block, Bahia, Brazil: Influence of charnockite intrusion on granulite facies metamorphism. – Lithos 92, 537–556.

BERMAN, R.G. (1988): Internally-consistent thermodynamic database for stoichiometric minerals in the system Na2O-K2O-CaO-MgO-FeO-Fe2O3-Al2O3-SiO2-TiO2-H2O-CO2. – Journal of Petrology 29, 445–522.

BOHLEN, S.R. & LIOTTA, J.J. (1986): A barometer for garnet amphibolites and garnet granulites. – Journal of Petrology 27, 1025–1034.

BUDA, GY. (1981): Genesis of the Hungarian granitoid rocks. – Acta Geologica Hungarica 24, 309–318.

CHEMENDA, A.I., MATTAUER, M., MALAVIEILLE, J. & BOKUN, A.N. (1995): A mechanism for syn-collisional rock exhumation and associated normal faulting: Results from physical modelling. – Earth and Planetary Scince Letters 132, 225–232.

COISH, R.A. (1977): Ocean Floor metamorphism in the Betts Cove ophiolite, Newfoundland. – Contributions to Mineralogy and Petrology 60, 255–270.

CSONTOS, L., NAGYMAROSI, A., HORVÁTH, F. & KOVAC, M. (1992): Tertiary evolution of the Intra-Carpathian area: a model. – Tectonophysics 208, 221–241.

DE CAPITANI, C. (1994): Gleichgewichts-Phasendiagramme: Theorie und Software. – Beihefte zum European Journal of Mineralogy, 72. Jahrestagung der Deutschen Mineralogischen Gesellschaft 6, 48.

DOS SANTOS, T.M.B., MUNHÁ, J.M., TASSINARI, C.C.G. & FONSECA, P.E. (2011): The link between partial melting, granitization and granulite development in central Ribeira Fold Belt, SE Brazil: New evidence from elemental and Sr eNd isotopic geochemistry. – Journal of South American Earth Sciences, 31, 262–278.

DYMEK, R.F. & SCHIFFRIES, C.M. (1987): Calcic myrmekite: possible evidence for the involvement ofwater during the evolution of andesine anorthosite from St-Urbain, Quebec. – Canadian Mineralogist, 25, 291–319.

EFIMOV, A.A., FLEROVA, K.V. & MAEGOV, V.I. (2010): The first find of calcic myrmekite (quartz-plagioclase symplectites) in Uralian gabbro. – Geochemistry, 435/1, 1450–1455.

FINTOR, K., SCHUBERT, F. & TÓTH T.M. (2008): Hiperszalin paleofluidum-áramlás nyomai a Baksai Komplexum repedésrendszerében. (Indication of hypersaline palaeofluid migration in the fracture system of the Baksa Complex. in Hungarian) – Földtani Közlöny 138/3, 257–278.

FINTOR, K., TÓTH T.M. & SCHUBERT, F. (2009): A Baksai Komplexum posztmetamorf fluidum evolúciója. (Post-metamorphic fluid evolution of the Baksa Complex. in Hungarian) – In: TÓTH, T.M. (ed.): Magmás és metamorf képződmények a Tiszai Egységben. GeoLitera, pp. 245–258.

FINTOR, K., TÓTH T.M. & SCHUBERT, F. (2010): Near vein metasomatism along propylitic veins in the Baksa Gneiss Complex, Pannonian Basin, Hungary. – Geologia Croatica, 63/1, 75–91.

FINTOR, K., TÓTH T.M. & SCHUBERT, F. (2011): Hydrothermal palaeofluid circulation in the fracture network of the Baksa Gneiss Complex of SW Pannonian Basin, Hungary. – Geofluids, 11/2, 144–165.

FLOYD, P.A., WINCHESTER, J.A., CIESIELCZUK, J., LEWANDOWSKA, A., SZCZEPANSKI, J. & TURNIAK, K. (1996): Geochemistry of early Paleozoic amphibolites from the Orlica-Śnieżnik dome, Bohemian massif: petrogenesis and palaeotectonic aspects. – Geologische Rundschau 85, 225–238.

GRANTHAM, G.H., MACEY, P.H., HORIE, K., KAWAKAMI, T., ISHIKAWA, M., SATISH-KUMAR, M., TSUCHIYA, N., GRASER, P. & AZEVEDO, S. (2013): Comparison of the metamorphic history of the Monapo Complex, northern Mozambique and Balchenfjella and Austhameren areas, Sør Rondane, Antarctica: Implications for the Kuunga Orogeny and the amalgamation of N and S. Gondwana. – Precambrian Research, in press

HAAS, J., KOVÁCS, S., KRYSTYN, L. & LEIN, R. (1995): Significance of Late Permian-Triassic facies zones in terrane reconstructions in the Alpine-North Pannonian domain. – Tectonophysics 242, 19–40.

HENRY, D.J., GUIDOTTI, C.V. & THOMSON, J.A. (2005): The Ti-saturation surface for low-to-medium pressure metapelitic biotite: Implications for Geothermometry and Ti-substitution Mechanisms. – American Mineralogist, 90, 316–328.

HORVÁTH, P., KOVÁCS, G. & SZAKMÁNY, GY. (2003): Eclogite and garnetiferous amphibolite gravels from Miocene conglomerates: new results for the Variscan metamorphic evolution of the Tisza Unit (Pannonian Basin, Hungary) – Geol. Carpath. 54/6, 1–12.

HORVÁTH, P., BALEN, D., FINGER, F., TOMLJENOVIĆ, B. & KRENN, E. (2010): Contrasting P–T–t paths from the basement of the Tisia Unit (Slavonian Mts.,NE Croatia): Application of quantitative phase diagrams and monazite age dating. – Lithos 117, 269–282.

IRVINE, T.N. & BARAGAR, W.A.R. (1971): A guide to the chemical classification of the common volcanic rocks. – Canadian Journal of Earth Sciences 8, 523–548.

KIRÁLY, E. (1996): Adalékok a délkelet-dunántúli polimetamorf aljzat megismeréséhez. (Contributions to the recognition of the polymetamorphic basement of SE Transdanubia. in Hungarian) – Földtani Közlöny 126/1, 1–23.

KLÖTZLI, U., BUDA, GY. & SKIÖLD, T. (2004): Zircon typology, geochronology and whole rock Sr-Nd isotope systematics of the Mecsek Mountain granitoids in the Tisia Terrane (Hungary). – Mineralogy and Petrology, 81, 113–134.

KOTKOVÁ, J. (2007): High-pressure granulites of the Bohemian Massif: recent advances and open questions. – Journal of Geosciences, 52, 45–71.

KOVÁCH, Á., SVINGOR, É. & SZEDERKÉNYI, T. (1985): Rb-Sr dating of basement rocks from the southern foreland of the Mecsek Mountains, Southern Transdanubia, Hungary. – Acta Miner. Petr. Szeged XXVII, 51–56.

KOVÁCS, G., TÓTH T.M. & SCHUBERT, F. (2009): A Gyódi Szerpentinit metamorf fejlődése. (Metamorphic evolution of the Gyód serpentinite body. in Hungarian) – In: TÓTH, T.M. (ed.): Magmás és metamorf képződmények a Tiszai Egységben. GeoLitera, p. 81–100.

LE MAITRE, R.W. (ed.) (1989): A Classification of Igneous Rocks and Glossary of Terms. – Blackwell, Oxford, 193 pp.

MATTE, P.H., MALUSKI, H., RAJLICH, P. & FRANKE, W. (1990): Terrane boundaries in the Bohemian Massif: result of a large-scale Variscan shearing. – Tectonophysics 177, 151–170.

MESCHEDE, M. (1986): A method of discriminating between different types of mid-ocean ridge basalts and continental tholeiites with a Nb-Zr-Y diagram. – Chemical Geology 56, 207–218.

MEYRE, C., DE CAPITANI, C. & PARTZSCH, J.H. (1997): A ternary solid solution model for omphacite and its application to geothermobarometry of eclogites from the Middle Adula nappe (Central Alps, Switzerland). – J Met Geol 15, 687–700.

MORRISON, M.A. (1978): The use of "immobile" trace element to distinguish the paleo¬tectonic affinities of metabasalts: applica¬tions to the paleo¬cene basalts of Mull and Skye, northwest Scotland. – Earth and Planetary Science Letters 39, 407–416.

NAGY, Á. & TÓTH, T.M. (2009): Relikt szöveti elemek a Görcsönyi Formáció óriásgránátos gneisz tagozat mintáiban. (Relict textures in the garnetiferous gneiss unit of the Görcsöny Formation. in Hungarian) – In: TÓTH, T.M. (ed.): Magmás és metamorf képződmények a Tiszai Egységben. GeoLitera, p. 65–79.

NESBITT, H.W. & YOUNG, G.M. (1989): Formation and diagenesis of weathering profiles. – Journal of Geology, 97, 129–147.

O’BRIEN, P.J. (2000): The fundamental Variscan problem: high-temperature metamorphism at different depths and high-pressure metamorphism at different temperatures. – In: FRANKE, W., HAAK, V., ONCKEN, O. & TANNER, D. (eds.): Orogenic Processes: Quantification and modelling in the Variscan Belt. pp. 369–386.

OGILVIE, P., GIBSON, R.L., REIMOLD, W.U. & DEUTSCH, A. (2004): Experimental investigation of schock effects in a metapelitic granulite. – 35th Lunar and Planetary Science Conference, March 15-19, 2004, League City, Texas, abstract no.1242.

OLIVER, G.J.H., CORFU, F. & KROGH, T.E. (1993): U-Pb ages from SW Poland: evidence for a Caledonian suture zone between Baltica and Gondwana. – Journal of Geological Society, London 150, 366–369.

PAMIĆ, J., BALEN, D. & TIBLJAŠ, D. (2002): Petrology and geochemistry of orthoamphibolites from the Variscan metamorphic sequences of the South Tisia in Croatia – an overview with geodynamic implications. – Int J Earth Sci (Geol Rundsch) 91,787–798.

PEARCE, J.A. & CANN, J.R. (1973): Tectonic setting of basic volcanic rocks determined using trace ele¬ment analyses. – Earth and Planetary Science Letters 19, 290–300.

PEARCE, J.A. & GALE, G.H. (1977): Identification of ore-deposition environment from trace ele¬ment geochemistry of associated igneous host rocks. – In: Volcanic processes in ore genesis; Geological Society London Publ. 7, 14–24.

PEARCE, J.A. & NORRY, M.J. (1979): Petrogenetic implications of Ti, Zr, Y and Nb variations in volcanic rocks. – Contributions to Mineralogy and Petrology 69, 33–47.

PRAKASH, D., SINGH, P.C., ARIMA, M. & SINGH, T. (2012): P–T history and geochemical characteristics of mafic granulites and charnockites from west of Periya, North Kerala, southern India. – Journal of Asian Earth Sciences 61, 102–115.

RAASE, P. (1974): Al and Ti contents of hornblende, indications of pressure and temperature of regional metamorphism. – Contributions to Mineralogy and Petrology 45, 231–236.

RAGLAND, P.C., CONLEY, J.F., PARKER, W.C. & VAN ORMAN, J.A. (1997): Use of principal components analysis in petrology: an example from the Martinsville igneous complex, Virginia, U.S.A. – Mineralogy and Petrology 60, 165–184.

RAVASZ-BARANYAI, L. (1969): Eclogite from the Mecsek Mountains, Hungary. – Acta Geol. Sci. Hung. 13, 315–322.

SAJEEV, K. & OSANAI, Y. (2004): Ultrahigh-temperature Metamorphism (1150 °C, 12 kbar) and Multistage Evolution of Mg-, Al-rich Granulites from the Central Highland Complex, Sri Lanka. – Journal of Petrology, 45/9, 1821–1844.

SUN, S.S. & MCDONOUGH, W.F. (1989): Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. – In: SAUNDERS, A.D. & NORRY, M. (eds) Magmatism in the Ocean Basins. Geological Society, London, Special Publications 42, 313–345.

SZEDERKÉNYI, T. (1974): Paleozoic magmatism and tectogenesis in South-East Transdanubia. – Acta Geol. Sci. Hung. 18, 305–313.

SZEDERKÉNYI, T. (1976): Barrow type metamorphism in the crystalline basement of Southeast Transdanubia. – Acta Geol. Sci. Hung. 20/1–2, 47–61.

SZEDERKÉNYI, T. (1977): Geological evolution of South Transdanubia (Hungary) in Paleozoic time. – Acta Miner. Petr., Szeged XXIII, 3–14.

SZEDERKÉNYI, T. (1983): Origin of amphibolites and metavolcanics of crystalline com¬plexes of South Transdanubia, Hungary. – Acta Geologica Hungarica 26/1–2, 103–136.

SZEDERKÉNYI, T. (1996): Metamorphic formations and their correlation in the Hungarian part of the Tisia megaunit (Tisia megaunit terrane). – Acta Miner. Petr., Szeged XXXVII, 143–160.

TARNAI, T. (1997): Ore minerals from the key section of the Baksa Complex (W Baranya Hills, Hungary). – Acta Miner. Petr., Szeged XXXVIII, Supplementum, 119–133.

TARNAI, T. (1998): Mineralogical-petrological study on ore vein penetrated by the key-borehole Baksa No. 2, SE Transdanubia, Hungary. – Acta Miner. Petr., Szeged XXXIX, 21–34.

THOMPSON, R.N., DICKIN, A.P., GIBSON, I.L. & MORRISON, M.A. (1982): Elemental fingerprints of isotopic contamination of Hebridean Palaeocene mantle-derived magmas by Archean sial. – Contributions to Mineralogy and Petrology 79, 159–168.

VAN DER MOLEN, I. & VAN ROERMUND, H.L.M. (1986): The pressure path of solid inclusions in minerals: the retention of coesite inclusion during uplift. – Lithos, 19, 317–324.

VON BLANCKENBURG, F. & DAVIES, J.H. (1995): Slab break-off: A model for syncollisional magmatism and tectonics in the Alps. – Tectonics 14, 120–131.

WATERS, D.J. (2001): The significance of prograde and retrograde quartz-bearing intergrowth microstructures in partially melted granulite-facies rocks. – Lithos, 56, 97–110.

WHITNEY, D.L. & EVANS, B.W. (2010): Abbreviations for names of rock-forming minerals. – American Mineralogist, 95, 185–187.
WOOD, D.A. (1979): A variably veined suboceanic upper mantle genetic significance for mid-ocean ridge basalts from geochemical evidence. – Geology 7, 499–503.

WOOD, D.A., GIBSON, I.L. & THOMPSON, R.N. (1976): Elemental mobility during zeolite facies metamorphism of the tertiary basalts of Eastern Iceland. – Contributions to Mineralogy and Petrology 55, 241–254.