Mineralogy, surface properties and electrokinetic behaviour of kaolin clays from the naturally occurring pegmatite deposits

Main Article Content

Maja Ivanić
Neda Vdović
Sandra de Barreto
Vladimir Bermanec
Ivan Sondi

Abstract

This paper comprises the research on the surface characteristics, the specific surface area (SSA), the cation exchange capacity (CEC) and the electrophoretic mobility (EPM) of the kaolin clays obtained from different naturally occurring pegmatite and granite deposits worldwide. Particularly the influence of the ancillary minerals on these properties was studied, as well as the diversity in morphological and structural characteristics of kaolinite in samples. The mineral composition and the morphology of the kaolin samples were investigated using X-ray diffraction (XRD) and field emission scanning electron microscope (FE-SEM), respectively. The SSA was determined by BET method, the CEC by ammonium selective electrode and the surface charge by EPM measurements. The results showed that the surface properties of the kaolin samples were strongly influenced by the presence of ancillary constituents, particularly smectite minerals. Their occurrence, even in trace amounts, significantly increased SSA and CEC values of the investigated samples. Most importantly, EPM measurements revealed that the character of the amphoteric surfaces of the dominant kaolinite mineral in samples was rescinded by the permanent pH-independent siloxane basal charge of smectite. The presence of ancillary smectites, characterized with the higher surface reactivity, hindered the surface properties of the prevailing kaolinite mineral in the kaolin clay deposits.

Downloads

Download data is not yet available.

Article Details

Section
Original Scientific Papers

References

BAILEY, S.W. (1980): Summary of recommendations of AIPEA. – Clays Clay Miner., 28, 73-78. doi: 10.1346/CCMN.1980.0280114

BAILEY, S.W. (1991): Hydrous phyllosilicates (exclusive of micas). – Reviews in Mineralogy MSA, 19, 725 p. doi: 10.1016/0037-0738(89)90093-6

BALAN, E., CALAS, G. & BISH, D. (2014): Kaolin-group minerals: from hydrogen-bonded layers to environmental recorders. – Elements, 10, 183-188. doi: 10.2113/gselements.10.3.183

BERGAYA, F., THENG, B.K.G. & LAGALY, G. (2006a): Handbook of Clay Science, Developments in Clay Science, vol. 1. – Elsevier, 1224 p. doi: 10.1016/S1572-4352(05)01036-6

BERGAYA, F., LAGALY, G. & VAYER, M. (2006b): Cation and anion exchange. – In: BERGAYA, F., THENG, B.K.G. & LAGALY, G. (eds.): Handbook of Clay Science, Developments in Clay Science, vol. 1. – Elsevier, 979-1001. doi: 10.1016/S1572-4352(05)01036-6

BUSENBERG, E., & CLEMENCY, C.V. (1973): Determination of the cation exchange capacity of clays and soils using an ammonia electrode. – Clays Clay. Miner., 21, 213-217.

CHEKLI, L., PHUNTSHO, S., ROY, M. & SHON, H.K. (2013): Characterization of Fe-oxide nanoparticles coated with humic acid and Suwannee River natural organic matter. – Sci. Tot. Env., 461, 19-27. doi: 10.1016/j.scitotenv.2013.04.083

CYGAN, R.T. & TAZAKI, K. (2014): Interactions of kaolin minerals in the environment. – Elements, 10, 195-200. doi:10.2113/gselements.10.3.195

FERRIS, A.P. & JEPSON, W.B.J. (1975): The exchange capacities of kaolinite and the preparation of homoionic clays. – Colloid Interface Sci., 51, 245-259. doi:10.1016/0021-9797(75)90110-1

GRIM, R.E. (1968): Clay Mineralogy. – McGraw Hill, New York, 596 p.

HERRINGTON, T.M., CLARKE, A.Q. & WATTS, J.C. (1992): The surface charge of kaolin. – Colloid. Surface., 68, 161-169. doi: 10.1016/0166-6622(92)80200-L

JAMES, A.E. & WILLIAMS, D.J.A. (1982): Particle interactions and rheological effects in kaolinite suspensions. – Adv. Colloid Interface Sci., 17, 219-232. doi:10.1016/0001-8686(82)80021-3
JEPSON, W.B. (1988): Structural iron in kaolinites and in associated ancillary minerals. – In: STUCKI, J.W., GOODMAN, B.A. & SCHWERTMANN, U. (eds.): Iron in Soils and Clay Minerals, NATO ASI, Series C: Mathematical and Physical Sciences, vol. 217, D. Reidel Publishing Company, Holland, 467-536.

MA, C. & EGGLETON, R.A. (1999): Cation exchange capacity of kaolinite. – Clays Clay Miner., 47, 174-180. doi: 10.1346/CCMN.1999.0470207

MACHT, F., EUSTERHUES, K., PRONK, G.J. & TOTSCHE, K.U. (2011): Specific surface area of clay minerals: Comparison between atomic force microscopy measurements and bulk-gas (N2) and -liquid (EGME) adsorption methods. – Appl. Clay Sci., 53, 20-26. doi: 10.1016/j.clay.2011.04.006

MOORE, D.M. & REYNOLDS, R.C.Jr. (1997): X-ray Diffraction and the Identification and Analysis of Clay Minerals. – Oxford University Press, Oxford, 378 p.

NEWMAN, A.C.D. (1987): Chemistry of Clays and Clay Minerals, Mineralogical Society Monograph 6. – Longman Scientific & Technical, 480 p.

SONDI, I., BIŠĆAN, J. & PRAVDIĆ, V. (1996): Electrokinetics of pure clay minerals revisited. – J. Colloid Interf. Sci., 178, 514-522. doi: 10.1006/jcis.1996.0146

SONDI, I., STUBIČAR, M. & PRAVDIĆ, V. (1997a): Surface properties of ripidolite and beidellite clays modified by high-energy ball milling. – Colloid. Surface. A, 127, 141-149. doi: 10.1016/S0927-7757(96)03893-9

SONDI, I., MILAT, O. & PRAVDIĆ, V. (1997b): Electrokinetic potentials of clay surfaces modified by polymers. – J. Colloid Interf. Sci., 189, 66-73. doi: 10.1006/jcis.1996.4753

SONDI, I. & PRAVDIĆ, V. (2001): Electrokinetic investigations of clay mineral particles. – In: DELGADO, Á.V. (ed.): Interfacial Electrokinetics and Electrophoresis, Surfactant Science Series, vol. 106, Marcel Dekker, USA, 773-797.

SONDI, I. & PRAVDIĆ, V. (2002): Elektrokinetics of clay mineral surfaces. In: – Encyclopedia of Surface and Colloid Science, Marcel Dekker, USA, 1887-1893.

SPOSITO, G. (1984): The Surface Chemistry of Soils. – Oxford University Press, New York. 234 p.

STARKEY, H.C., BLACKMON, P.D. & HAUFF, P.L. (1984): The routine mineralogical analysis of clay-bearing samples. – USGS Bulletin 1563, 1-32.

THENG, B.K.G. & YUAN, G. (2008): Nanoparticles in the soil environment. – Elements, 4, 395-399. doi: 10.2113/gselements.4.6.395

TOMBÁCZ, E. & SZEKERES, M. (2004): Colloidal behaviour of aqueous montmorillonite suspensions: the specific role of pH in the presence of indifferent electrolytes. – Appl. Clay Sci., 27, 75-94. doi: 10.1016/j.clay.2004.01.001

TOMBÁCZ, E. & SZEKERES, M. (2006): Surface charge heterogeneity of kaolinite in aqueous suspension in comparison with montmorillonite. – Appl. Clay Sci., 34, 105-124. doi: 10.1016/j.clay.2006.05.009

VAN OLPHEN, H. (1951): Rheological phenomena of clay sols in connection with the charge distribution on the micelles. – Discuss. Faraday Soc., 11, 82-84. doi: 10.1039/DF9511100082

VAN OLPHEN, H. (1977): An Introduction to Clay Colloid Chemistry. – John Wiley & Sons, USA, 318 p.

VDOVIĆ, N., JURINA, I., ŠKAPIN, S. & SONDI, I. (2010): The surface properties of clay minerals modified by intensive dry milling – revisited. – Appl. Clay Sci., 48, 575-580. doi: 10.1016/j.clay.2010.03.006

WAN, J. & TOKUNAGA, T.K. (2002): Partitioning of clay colloids at air-water interfaces. – J. Colloid Interf. Sci., 247, 54-61. doi: 10.1006/jcis.2001.8132

WILKINSON, K.J. & REINHARDT, A. (2005): Contrasting role of natural organic matter on colloidal stabilization and flocculation in freshwaters. – In: DROPPO, I., LEPPARD, G.G., LISS, S.N. & MILLIGAN, T.G. (eds.): Flocculation in Natural and Engineered Environmental Systems, CRC Press, 438 p.
ZBIK, M. & SMART, R.ST.C. (1998): Nanomorphology of kaolinites: comparative SEM and AFM studies. – Clays Clay. Miner., 46, 153-160. doi: 10.1346/CCMN.1998.0460205

ZHOU, Z. & GUNTER, W.D. (1992): The nature of the surface charge of kaolinite. – Clays Clay. Miner., 40, 365-368. doi: 10.1346/CCMN.1992.0400320

ZHUANG, J. & YU, G.-R. (2002): Effects of surface coatings on electrochemical properties and contaminant sorption of clay minerals. – Chemosphere, 49, 619-628. doi: 10.1016/S0045-6535(02)00332-6