Pore characterization, acoustic and permeability measurements on core plug triplets, from the Miocene Tótkomlós (Calcareous Marl) Formation of the Pannonian-basin, Hungary
Main Article Content
Abstract
The Tótkomlós Calcareous Marl (TCM), a Member of the Late Miocene Endrőd Formation was investigated as a potential cap and source rock and also as a local tight reservoir in the Pannonian Basin. Only a limited dataset is available for petrophysical characterisation of this formation. The study reports on a complex measurement campaign performed on three core triplet samples of the Tótkomlós Calcareous Marl, including pore structure and petrophyiscal analysis at various pressure conditions. Direct laboratory measurements of compressional (P) and shear (S) wave velocities on oriented rock samples provide information about the anisotropic behaviour of the studied samples. A quantitative description of seismic anisotropy can improve the quality of seismic data processing.
Pore structure investigations indicated plate-like materials with a typical pore throat size between 75-110 nm. Gas permeability measurements showed very low permeability values in the order of magnitude between 10-16-10-18 m2. Weak acoustic anisotropy is observed both for P- and S- waves. Decreasing anisotropy with increasing confining pressure indicated that the samples become less anisotropic with increasing effective stress.
Downloads
Article Details
Authors have copyright and publishing rights on all published manuscripts.
References
AMERICAN PETROLEUM INSTITUTE (1998): Recommended Practices for Core Analysis - API Publishing Services, Washington.
AULD, B. A. (1973): Acoustic fields and waves in solids – John Wiley & Sons Inc, New York.
CAZORLA-AMOROS, D., ALCANIZ-MONJE, J. & LINARES-SOLANO, A. (1996): Characterization of Activated Carbon Fibers by CO2 Adsorption – In: Langmuir, 12, 2820-2824. doi: 10.1021/la960022s
CHOLACH, P. Y. & SCHMITT, D. R. (2006): Intrinsic elasticity of a textured transversely isotropic muscovite aggregate: Comparisons to the seismic anisotropy of schists and shales – In: Journal of Geophysical. Research, 111, 410-427. doi: 10.1029/2005JB004158
DELLINGER, J. & VERNIK, L. (1994): Do traveltimes in pulse-transmission experiments yield anisotropic group or phase velocities? – In: Geophysics, 59, 1774-1779. doi: 10.1190/1.1443564
FEDOR, F., HÁMOS, G., JOBBIK, A., MÁTHÉ, Z., SOMODI, G., SZŰCS, I. (2008): Laboratory pressure pulse decay permea Laboratory Pressure Pulse Decay Permeability Measurement of Boda Claystone, Mecsek Mts, SW Hungary – Physics and Chemistry of the Earth 33: pp. S45-S53.
HEMSING, D. B. (2007): Laboratory determination of seismic anisotropy in sedimentary rock from the Western Canadian Sedimentary Basin: M.Sc. thesis, University of Alberta.
HORNBY, B. E. (1998): Experimental laboratory determination of the dynamic elastic properties of wet, drained shales – In: Journal of Geophysical. Research, 103, 29945-29964. doi: 10.1029/97JB02380
JOHNSTON, J. E. & CHRISTENSEN, N. I. (1995): Seismic anisotropy of shales – In: Journal of Geophysical. Research, 100, 5991-6003. doi: 10.1029/95JB00031
JUHÁSZ, GY. (1992): A pannóniai (s.l.) formációk térképezése az Alföldön: elterjedés, fácies és üledékes környezet [Pannonian (s.l.) lithostratigraphic units in the Great Hungarian Plain: distribution, facies and sedimentary environment – in Hungarian]. - In: Földtani Közlöny, Budapest, 122/2—4, 133—165.
JUHÁSZ, GY. (1998): A magyarországi neogén mélymedencék pannóniai képződményeinek litosztratigráfiája [Litostratigraphy of Pannonian Formations of Hungarian Neogene basins – in Hungarian].– In Jámbor et al: Magyarország geológiai képződményeinek rétegtana, Budapest, 469-483.
KORONCZ, P., FEDOR, F. (2016): Experimental investigation of stress-dependent petrophysical behaviour of reservoir rocks – In Cvetković et al: 8th Croatian-Hungarian and 19th Hungarian geomathematical congress, Trakošćan, pp. 83-87.
LEMBERKOVICS, V. (2016): Distribution and heterogeneity of Tótkomlós Calcareous Marl Member of Endrőd Marl Formation, Kiskunhalas & Kelebia Exploration areas - Mészmárga Ankét, Szolnok – verbal presentation, 11 slides.
MAGYAR, I., JUHÁSZ, GY., SZUROMINÉ KORECZ, A. & SÜTŐNÉ SZENTAI, M. (2004): A pannóniai Tótkomlósi Mészmárga Tagozat kifejlődése és kora a Battonya-pusztaföldvári- hátság környezetében [The Tótkomlós Calcareous Marl Member of the Lake Pannon sedimentary sequence in the Battonya-Pusztaföldvár region, SE Hungary – in Hungarian with an English Abstract].- Földtani Közlöny, 134/4, 521–540.
MAGYAR, I., RADIVOJEVIĆ, D., SZTANÓ, O., SYNAK, R., UJSZÁSZI, L. & PÓCSIK, M. (2013): Progradation of the paleo-Danube shelf margin across the Pannonian Basin during the Late Miocene and Early Pliocene.– Global and Planetary Change, 103, 168–173. doi: 10.1016/j.gloplacha.2012.06.007
MARTÍNEZ, J.M., SCHMITT, D.R. & KOFMAN, R. (2012): Anisotropy measurements in a multi-faced core sample by using pulse transmission method, GeoConvention, Calgary, Alberta.
OSTADHASSAN, M., ZENG, Z., JABBARI, H. (2012): Anisotropy Analysis in Shale Using Advanced Sonic Data – Extended abstract, Bakken Case Study, AAPG Annual Convention and Exhibition, USA
THOMMES, M., KANEKO, K., NEIMARK, A.V., OLIVIER, J.P., RODRIGUEZ-REINOSO, F., ROUQUEROL, J. & SING, K.S.W. (2015): Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report).– Pure and Applied Chemistry, 87, 9–10, 1051–1069. doi: 10.1515/pac-2014-1117
THOMSEN, L. (1986): Weak elastic anisotropy - In: Geophysics, 51, 1954-1966. doi: 10.1190/1.1442051
TSVANKIN, I. (1997): Reflection move-out and parameter estimation for horizontal transverse isotropy – In: Geophysics, 62, 614-629. doi: 10.1190/1.1444170
VERNIK, L. & LIU, X. (1997): Velocity anisotropy in shales: A petrophysical study - In: Geophysics, 62, 521-532. doi: 10.1190/1.1444162