Evolution of ore-forming fluids in the Bukovik-Kadiica porphyry Cu deposit, Republic of Macedonia

Main Article Content

Goran K. Tasev
Dalibor T. Seafimovski
Todor S. Serafimovski


The Bukovik-Kadiica mineralized system is hosted by Tertiary dacitic and andesitic volcanic rocks which have intruded the basement of Palaeozoic schists in the Serbo-Macedonian Massif of eastern Macedonia. The latest geological exploration has confirmed that this porphyry copper mineralizationis characterized by a dominance of chalcocite and covellite with associated chalcopyrite, emplectite, and bornite, with the highest grades in a zone of supergene enrichment. Silicification is the dominant alteration within the mineralized system, whilst zones of potassic, phyllic, argillic, propylitic, and advanced argillic alteration are also present. Silicification and sulphide mineralization are located in stockworks in altered dacite and andesite breccia. Dissolution of primary sulphides and chemical leaching are evident in the zones of oxidation, dominated by limonite breccia.The main copper mineralization has a vertical extent between 90 and 220 m. Fluid inclusion studies of mineralized quartz veins have identified three separate groups of fluids: saline inclusions which homogenize at 326-501 °C and have a salinity of 32-45 wt% NaCl equiv., vapour-dominated inclusions which homogenize at 438-497 °C and have a salinity of 6–16 wt% NaCl equiv., and more dilute, two-phase vapour–liquid inclusions that homogenize at 360-627 °C and have a salinity of 3-24 wt% NaCl equiv.


Download data is not yet available.

Article Details

Original Scientific Papers
Author Biographies

Goran K. Tasev, University "Goce Delcev"-Stip Faculty of Natural and Technical Sciences

Mineral deposits department

Dalibor T. Seafimovski, University "Goce Delcev"-Stip Faculty of Electrical engineering

Electrical engineering-Informatics

Todor S. Serafimovski, University "Goce Delcev"-Stip Faculty of Natural and Technical Sciences

Mineral deposits department


AHMAD, S.N. & ROSE, A.W. (1980): Fluid inclusions in porphyry and skarn ore at Santa Rita, New Mexico.– Econ. Geol., 75, 229–250. doi: 10.2113/gsecongeo.75.2.229

ALEXANDROV, M. & BOMBOL, D. (2007): Izveštaj od istražuvanjata vo periodot 2002-2006 na koncesijata Kadiica-Pehčevo [Report of explorations in the period 2002-2006 of the concession Kadiica-Pehcevo – in Macedonian].– PHELPS DODGE EXPLORATION CORPORATION, Phoenix, Arizona, USA, 30 p.

ANTHONY, E.Y., REYNOLDS, T.J. & BEANE, R.E. (1984): Identification of daughter minerals in fluid inclusions using scanning electron microscopy and energy dispersive analysis.– Amer. Mineral., 69, 1053–1057.

ANTIĆ, M., PEYTCHEVA, I., VON QUADT, A., KOUNOV, A., TRIVIĆ, B., SERAFIMOVSKI, T., TASEV, G., GERDJIKOV, I. & WETZEL, A. (2016): Pre-Alpine evolution of a segment of the North-Gondwanan margin: Geochronological and geochemical evidence from the central Serbo-Macedonian Massif.– Gondwana Resear., 36, 523–544, doi: 10.1016/j.gr.2015.07.020

ARSOVSKI, M. & IVANOV, T. (1977): Neotectonics magmatism and metallogeny on the territory of Yugoslavia.– Metallogeny and platetectonics in the NE Mediterranean, Belgrade, 471–482.

ATKINSON, A.B.JR. (2002): A Model for the PTX Properties of H2O-NaCl. - MSc Thesis, Faculty of Virginia Polytechnic Institute and State University, USA (Comm: Robert J. Bodnar, Cahit Coruh and Christine Anderson-Cook), 126 p.

AUDÉTAT, A. & PETTKE, T. (2003): The magmatic-hydrothermal evolution of two barren granites: A melt and fluid inclusion study of the Rito del Medio and Canada Pinabete plutons in northern New Mexico (USA).– Geoch. et Cosmoch. Acta, 67, 97–121. doi:

BARNES, H.L. (1979): Solubilities of ore minerals.– In: BARNES H.L. (ed): Geochemistry of hydrothermal ore deposits. Wiley, New York, 404–460.

BEANE, R.E. & TITLEY, S.R. (1981). Porphyry copper deposits: Part II. Hydrothermal Alteration and Mineralization.– Econ. geol., 75th Anniversary Vol. (eds. SKINNER, J.B.), 235–269.

BEANE, R.E. & BODNAR, R.J. (1995): Hydrothermal fluids and hydrothermal alteration in porphyry copper deposits.– In: PIERCE, F.W. & BOHM, J.G. (eds): Porphyry Copper Deposits of the American Cordillera. Ariz. Geol. Soc. Dig., 20, 83–93.

BISCHOFF, J.L. & PITZER, K.S. (1989): Liquid-vapor relations for the system NaCl-H2O: summery of the PTX surface from 300º to 500ºC.– Amer. J. Sci., 289, 217–248.

BLUNDY, J., MAVROGENES, J., TATTITCH, B., SPARKS, S. & GILMER, A. (2015): Generation of porphyry copper deposits by gas-brine reaction in volcanic arcs.–Nature Geoscience, 8/3, 235–240. doi: 10.1038/ngeo2351

BODNAR, R.J. & VITYK, M.O. (1994): Interpretation of microterhrmometric data for H2O-NaCl fluid inclusions.– In: DE VIVO, B. & FREZZOTTI, M.L. (eds): Fluid inclusions in minerals: methods and applications. Pontignano-Siena, 117–130.

BODNAR, R.J., BURNHAM, C.W. & STERNER, S.M. (1985): Synthetic fluid inclusions in natural quartz. III. Determination of phase equilibrium properties in the system H2O-NaCl to 1000 C and 1500 bars.– Geoch. et Cosmoch. Acta, 49/9, 1861–1873. doi: 10.1016/0016-7037(85)90081-X

BODNAR, R.J. (1995): Fluid-inclusion evidence for a magmatic source of metals in porphyry copper deposits.– In: THOMPSON, J.F.H. (ed.): Magmas, Fluids and Ore Deposits. Mineral Assoc Can Short Course Ser, 23, 139–152.

BODNAR, R.J. (1993): Revised equation and table for determining the freezing point depression of H2O-NaCl solutions.– Geoch. and Cosmoch. Acta, 57, 683–684. doi:10.1016/0016-7037(93)90378-A

BOEV, B., JANKOVIĆ, S. & SERAFIMOVSKI, T. (1997): Magmatism and Tertiary Mineralization of the Kozuf Metallogenetic District, the Republic of Macedonia with Particular Reference to the Alshar deposit.– Spec. Publ., No.5., Faculty of Mining and Geology-Štip, p 262.

BOEV, B. & YANEV, Y. (2001): Tertiary magmatism within the Republic of Macedonia:a review.– Acta Vulcanol., 13/1-2, 57–71.

BOGOEVSKI, K. (1965): Metalogenija povezana sa Tercijernim magmatizmom u oblasti Osogovo-Besna Kobila [Metallogeny related to Tertiary magmatism in the Osogovo-Besna Kobila area – in Serbian].– PhD, Faculty of Mining and Geology, University in Belgrade, Serbia, 243 p.

BOYANOV, I., DABOVSKI, C., GOCEV, P., HARKOVSKA, A., KOSTADINOV, V., TZANKOV, T.Z. & ZAGORCEV, I. (1989): A new view of the Alpine tectonic evolution of Bulgaria.– Geol. Rhod., 1, 107–121.

BRIMHALL, G.H. JR. (1979): Lithologic determinations of mass transfer mechanism of multiple-stage porphyry copper mineralization at Butte, Montana. Vein formation by hypogene leaching and enrichment of potassium-silicate protore.– Econ. Geol. 74, 556–589.

BROWN, P. (1989): FLINCOR: a computer program for the reduction and investigation of fluid inclusion data.– Amer. Mineral., 74, 1390–1393.

A. & NURCE, B. (2008A): Evolution and dynamics of the Cenozoic Tectonics of the South Balkan extensional system.– Geosphere, 4/6, 919–938.

BURCHFIEL, B.C., KING, W.R., NAKOV, R., TZANKOV, T., DUMURDZANOV, N., SERAFIMOVSKI, T., TODOSOV, A. & NURCE, B. (2008B): Patterns of Cenozoic Extensional Tectonism in the South Balkan Extensional System.– In: HUSEBYE, E. S. (ed.): Earthquake Monitoring and Seismic JHazard Mitigation in Balkan Countries. Springer, 3–18. doi: 10.1007/978-1-4020-6815-7_1

BURNHAM, C.W. (1967): Hydrothermal fluids at the magmatic stage.– In:BARNES, H. L. (ed.): Geochemistry of Hydrothermal Ore Deposits. New York: John Wiley, 34–76.

BURNHAM, C.W. (1979): Magmas and hydrothermal fluids.– In: BARNES, H.L. (ed.): Geochemistry of hydrothermal ore deposits, 2nd ed.: New York, Wiley and Sons, 71–136.

CAMPOS, E., TOURET, J.L.R., NIKOGOSIAN, I. & DELGADO, J. (2002): Overheated, Cu-bearing magmas in the Zaldívar porphyry-Cu deposit, Northern Chile: Geodynamic consequences.– Tectonophysics, 345, 229–251.

CAMPOS, E., WIJBRANS, J. & ANDRIESSEN, A.M.P. (2009): New thermochronologic constraints on the evolution of the Zaldívar porphyry copper deposit, Northern Chile. – Min. Dep., 44/3, 329–342.

CANDELA, P.A. & HOLLAND, H.D. (1986): A mass-transfer model for copper and molybdenum in magmatic hydrothermal systems–the origin of porphyry-type oredeposits.– Econ. Geol., 81, 1–19.

CANDELA, P.A. & PICCOLI, P.M. (1995): Model ore-metal partitioning from melts into vapor and vapor ⁄ brine mixtures.– In: THOMPSON, J.F.H. (ed.): Magmas, Fluids, and Ore Deposits. Mineralogical Association of Canada Short Course Series 23, 101–127.

CANDELA, P.A. & PICCOLI, P.M. (2005): Magmatic processes in the development of porphyry-type ore systems. Economic Geolology, One Hundred Anniversary Volume: 25–38.

CHIVAS, A.R. & WILKINS, W.T. (1977): Fluid inclusion studies in relation to hydrothermal alteration and mineralization at the Koloula porphyry copper prospect, Guadalcanal.– Econ. Geol., 72, 153–169. doi: 10.2113/gsecongeo.72.2.153

CLINE, J.S. & BODNAR, R.J. (1991): Can economic porphyry copper mineralization be generated by a typical Calc-Alkaline melt?– J. Geophys. Resear., 5, 8113–8126. doi: 10.1029/91JB00053

CLINE, J.S. (1995): Genesis of porphyry copper deposits: The behaviour of water, chloride and copper in crystallizing melts.–Ariz. Geol. Soc. Digest, 20, 69–82.

CLINE, J.S. (2003): How to concentrate copper.– Science, 302, 2075–2076.

COOKE, D.R., & WILKINSON, J.J. (2014): Geochemistry of Porphyry Deposits.– Treatise on Geochemistry, Second Editionth edn. Elsevier, Oxford, 357–381. doi: 10.1016/B978-0-08-095975-7.01116-5

ČIFLIGANEC, V. (1993): Copper mineralization in the Republic of Macedonia: Types and Distribution patterns: with special reference to the porphyry copper deposit Bucim.–University “Sts. Cyril and Methodius”- Skopje, Faculty of Mining and Geology, Special Issue 1, 303 p.

DABOVSKI, C., BOYANOV, I., KHRISCHEV, K.H., NIKOLOV, T., SAPOUNOV, I., YANEV, Y. & ZAGORCHEV, I. (2002): Structure and Alpine evolution of Bulgaria. – Geol. Balc., 32/2-4, 9–15.

DIMITRIJEVIĆ, M.D. (1959): Basic characteristics of the column of the Serbo-Macedonian Mass.– Abstracts of the First symposium of the Serbian Geological Society, Belgrade.

DIMITRIJEVIC, M. (1995): Geology of Yugoslavia.– Geoinstitute, Belgrade, 205 p.

DRIESNER, T. & HEINRICH, C.A. (2007): The system H2O-NaCl. I. Correlation formulae for phase relations in temperature-pressure-composition space from 0 to 1,000°C, 0 to 5000 bar, and 0 to 1 XNaCl.– Geoch. et Cosmoch. Acta, 71, 4880–4901.

DURMURDZANOV, N., SERAFIMOVSKI, T. & BURCHFIEL, B.C. (2004): Evolution of the Neogene-Pleistocene basins of Macedonia.–Geological Society of America, Digital Map and Chart Series MC01, 20 p.

DURMURDZANOV, N., SERAFIMOVSKI, T. & BURCHFIEL, B.C., (2005): Cenozoic tectonics of Macedonia and its relation to the South Balkan extensional regime.– Geosphere, 1/1, 1–22.

DUZELKOVSKI, D. (1960): Geološki sostav na terenot Delčevo-Pehčevo (Planina Vlaina) [Geological composition of the terrain Delčevo-Pehčevo (Vlaina Mountain) – in Macedonian].– Papers of the Geol. Survey of the Republic of Macedonia, Skopje, 7, 66–82.

EASTOE, C.J. (1978): Fluid inclusion study of the Panguna porphyry copper deposit, Bougainville, Papua-New-Guinea.– Econ. Geol., 73, 721–748. doi: 10.2113/gsecongeo.73.5.721

FAN, H.R., XIE, Y.H. & WANG, Y.L. (1998): Determining daughter minerals in fluid inclusions under scanning electron microscope.– Geol. Sci. and Techn. Inform. 17(sup.), 111–117.

FOURNIER, R. (1999): Hydrothermal processes related to movement of fluid from plastic into brittle rock in the magmatic–epithermal environment.– Econ. Geol., 94, 1193–1212.

GAMMONS, C.H. & WILLIAMS-JONES, A.E. (1997): Chemical mobility of gold in the porphyry–epithermal environment.– Econ. Geol., 92, 45–59.

GJORGJEVIC, V., KARAMATA, S. & GJORGJEVIC, P. (1975): Proučavanje hidrotermalnih alteracija lokalnosti Borov Dol [Study of hydrothermal alterations at the Borov Dol locality – in Serbian].– Faculty of Mining and Geology, Laboratory for petrology, Belgrade, 30 p.

GOLDSTEIN, R.H. & REYNOLDS, T.J. (1994): Systematics of fluid inclusions in diagenetic minerals.– SEPM Short Course 31. Soc. for Sediment. Geol., 199 p. doi: 10.2110/scn.94.31

GONZALEZ-PATIDA, E. & LEVRESSE, G. (2003): Fluid inclusion evolution at the La Verde porphyry copper deposit, Michocan, Mexico. – J. Geoch. Explor., 78/79, 623–626.

GRAF, J. (2001): Alpine tectonics in western Bulgaria: Cretaceous compression of the Kraiste region and Cenozoic exhumation of the crystalline Osogovo-Lisec Complex.– PhD ETH No 14’238, Zurich, Switzerland, 197 p.

GRANCEA, L., BAILLY, L., LEROY, J., BANKS, D., MARCOUX, E., MILÉSI, J.P., CUNEY, M., ANDRÉ, A.S., ISTVAN, D. & FABRE, C. (2002): Fluid evolution in the Baia Mare epithermal gold/polymetallic district, Inner Carpathians, Romania.– Min. Dep. 37/6–7, 630–647. doi: 10.1007/s00126-002-0276-5

GRUBIĆ, A. (1980): Yugoslavia: Outline of Yugoslavian geology.– 26th Internat. Geological Congress, Paris, 615, 5–49.

GUILBERT, J.M. & PARK, C.F. (1996): The Geology of Ore Deposits.– Fifth Printing, W.H Freeman and Company, United States of America, 985 p.

GUSTAFSON, L.B. & HUNT, J.P. (1975): The porphyry copper deposit at El Salvador, Chile.– Econ. Geol., 70, 857–912. doi: 10.2113/gsecongeo.70.5.857

HAAR, L., GALLAGHER, T.S. & KELL, G.S. (1984): NBS/NRS Steam Tables: Thermodynamic and transport properties and computer programs for vapor and liquid states in SI units.– Hemisphere, Washington, DC, 120 p.

HAAS, J. (1976): Physical properties of the coexisting phases and thermochemical properties of the H2O component in boiling NaCl solution. (Preliminary steam tables for NaCl solution).– US Geol. Surv. Bull. 1421-A, 1–71.

HADŽI-PETRUSEV, B. (1985): Извештај за деталните истражувања на бакар на Буковик-Кадиица, Берово [Report of detailed copper explorations at the Bukovik- Kadiica, Berovo – in Macedonian].– Geol. Surv. Maced., 78 p.

HARKOVSKA, A. (1984): Tertiary magmotectonic zones in southwest Bulgaria.– In: VOZAR, J. (ed.): Magmatism of the molasse-forming epoch and its relation to endogenous mineralization: Bratislava, Geologicky ustav Dioyza Stura, 9–34.

HARKOVSKA, A., YANEV, Y. & MARCHEV, P. (1989): General features of the Paleogene orogenic magmatism in Bulgaria.– Geol. Balc., 19/ 1, 37–72.

HARRIS, A.C., GOLDING, S.D. & WHITE, N.C. (2005): The genesis of Bajo de la Alumbrera deposit: stable isotope evidence for a porphyry-related hydrothermal system dominated by magmatic aqueous fluids.– Econ. Geol., 101, 71–94.

HEDENQUIST, J.W. & LOWENSTERN, J.B. (1994): The role of magmas in the formation of hydrothermal ore deposits.– Nature, 370, 519–527. doi: 10.1038/370519a0

HEDENQUIST, J.W., ARRIBAS, A.J. & REYNOLDS, T.J. (1998): Evolution of an intrusion-centered hydrothermal system: Far Southeast-Lapanto porphyry and epithermal Cu-Au deposits, Philippines.– Econ. Geol., 93, 373–404. doi: 10.2113/gsecongeo.93.4.373

HEINRICH, C.A. (2005): The physical and chemical evolution of low salinity magmatic fluids at the porphyry to epithermal transition: a thermodynamic study.– Min. Dep., 39, 864–889. doi:

HEINRICH, C.A. (2007): Fluid-fluid interactions in magmatic-hydrothermal ore formation.– Reviews Mineral. and Geoch., 65, 363–87. doi: 10.2138/rmg.2007.65.11

HEINRICH, C.A., GÜNTER, D., AUDÉTAT, A., ULRICH, T. & FRISCHKNECHT, R., (1999): Metal fractionation between magmatic brine and vapour, determined by microanalysis of fluid inclusions.– Geology 27, 755–758.

HEINRICH, C.A., HALTER, W., LANDTWING, M.R. & PETTKE, T. (2005): The formation of economic porphyry copper (-gold) deposits: constraints from microanalysis of fluid and melt inclusions.– In: MCDONALD, I., BOYCE, A.J., BUTLER, I.B., HERRINGTON, R.J., POLYA, D.A. (eds): Mineral Deposits and Earth Evolution. Geological Society, London, Special Publications, 248, 247–263. doi:

HELGESON, H.C. (1964): Complexing and Hydrothermal Ore Deposition.– New York, Pergamon, 136 p.

HENLEY, R.W. & MCNABB, A. (1978): Magmatic vapor plumes and groundwater interaction in porphyry copper emplacement.– Econ. Geol., 73, 1–20.

IMAI, A. (2005): Evolution of hydrothermal system at the Dizon porphyry Cu-Au deposit, Zambales, Philippines.– Resource geol., 55, 73–90. doi:

IVANOV, T. & DENKOVSKI, DJ. (1980): Hydrothermal alterations in the Plavica-Zlatica porphyry copper deposit within the Kratovo-Zletovo volcanic area.– Symposia Alteration of rocks and minerals, 100 years of geological school and science in Serbia, Belgrade, 291 p.

IVESON, A.A., WEBSTER, J.D., ROWE, M. C., & NEILL, O.K. (2016): Magmatic–hydrothermal fluids and volatile metals in the Spirit Lake pluton and Margaret Cu–Mo porphyry system, SW Washington, USA.– Contrib. Mineral. and Petrol., 171/3, 1–32.

JANKOVIĆ, S. (1977): The copper deposits and geotectonic setting of the Tethyan Eurasian metallogenetic belt.– Mineral. Dep., 12/1, 37–47.

JANKOVIĆ, S. (1997): The Carpatho-Balkanides and adjacent area: a sector of the Tethyan Eurasian metallogenetic belt.– Min. Dep., 32/5, 426–433. doi: 10.1007/s001260050110

JANKOVIĆ, S. & PETKOVIC, M. (1974): Metallogeny and Concepts of the Geotectonic Development of Yugoslavia.– Metallogeny and Concepts of the Geotectonic Development of Yugoslavia, Faculty of Mining and Geology-Belgrade, 443–477.

JANKOVIĆ, S., PETKOVIĆ, M., TOMSON, I.N. & KRAVCOV, V. (1980): Porphyry Copper deposits in the Serbo-Macedonian province, southeastern Europe.– In: JANKOVIĆ, S & SILLITOE, R.H.( eds): European Copper Desposits, SGA Special publication No. 1, UNESCO-IGCP Projects No. 169 and 60, 96–102.

JANKOVIĆ, S. & SERAFIMOVSKI, T. (1997): Specific Features of Mineralization Related to Different Tectonic Enviroments in the Serbo-Macedonian Metallogenic Province.–Symposia-Annual Meeting, Proceedings, Dojran, 285–286.

JANKOVIĆ, S., SERAFIMOVSKI, T., JELENKOVIC, R. & CIFLIGANEC, V. (1997): Metallogeny of the Vardar zone and Serbo-Macedonian Mass.–Symposium-Annual Meeting, Proceeding, Dojran, 29-67.

KAMENETSKY, V.S., WOLFE, R.C., EGGINS, S.M., MERNAGH, T.P. & BASTRAKOV, .E (1999): Volatile exsolution at the Dinkidi Cu-Au porphyry deposit, Philippines: A melt-inclusion record of the initial ore-forming process.– Geology, 27, 691–694. doi:

KAMENETSKY, V.S. & KAMENETSKY, M.B. (2010): Magmatic fluids immiscible with silicate melts: examples from inclusions in phenocrysts and glasses, and implications for magma evolution and metal transport.– Geofluids, 10, 293–311. doi:

KARAMATA, S. (1974A): The geological evolution of the area of Yugoslavia: The nature and movements of plates and importance of these properties and processes for metallogeny.– Metallogeny and concepts of the geotectonic developments of Yugoslavia, Belgrade, 109–118.

KARAMATA, S. (1974B): Geološki razvoj naše oblasti: karakteristike i pokreti nekih ploča i važnost tih karakteristika i procesa za metalogeniju [Geological development of our area: characteristics and movements of particular plates and importance of those features and processes to the metallogeny – in Serbian].– In: Metallogeny and conceptions of the geotectonic development of the Yugoslavia, Faculty of Mining and Geology, Belgrade, 89–97.

KEEVIL, N.B. (1942): Vapor pressures of aqueous solutions at high temperatures.– Amer. Chem. Soc. J. 64, 841–850.

KILINC, I.A. & BURNHAM, C.W. (1972): Partitioning of chloride between a silicate melt and coexisting aqueous phase from 2 to 8 kilobars.– Econ. Geol., 67, 231–235. doi: 10.2113/gsecongeo.67.2.231

KISELINOV, H., PEYCHEV, K., GEORGIEV, S., PEYTCHEVA, I. (2014): New geochronology data on the Lower Cambrian age of the Frolosh Metamorphic Complex (Frolosh Unit) and Kadiytsa Formation-SW Bulgaria. Bul. Shk. Gjeol. 1/2014, Special Issue, Proceedings, XX Congress of the Carpathian-Balkan Geological Association, Tirana; 200–202, 2014.

KLEMM, L.M., PETTKE, T. & HEINRICH, C.A. (2007): Hydrothermal evolution of the El Teniente deposit, Chile-Porphyry Cu-Mo ore deposition from low-salinity magmatic fluids.– Econ. Geol., 102, 1021–1045. doi: 10.2113/gsecongeo.102.6.1021

KLEMM, L.M., PETTKE, T. & HEINRICH, C.A. (2008): Fluid and source magma evolution of the Questa porphyry Mo deposit, New Mexico, USA.– Min. Dep., 43, 533–552. doi: 10.1007/s00126-008-0181-7

KNIGHT, C.L. & BODNAR, R.J. (1989): Synthetic fluid inclusions: IX. Critical PVTX properties of NaCl-H2O solutions.– Geoch. Cosmoch. Acta, 53, 3–8. doi: 10.1016/0016-7037(89)90267-6

KOCKEL, F., MOLLAT, H. & GUNDLACH, H. (1975): Hydrothermaly altered and (Copper) mineralized Porphyritic Intrusions in the Serbo-Macedonian Massif (Greece).– Min. Dep. 10, 195–204.

KODĚRA, P., HEINRICH, C. A., WÄLLE, M. & LEXA, J. (2014): Magmatic salt melt and vapor: Extreme fluids forming porphyry gold deposits in shallow subvolcanic settings. – Geology, 42/6, 495–498. doi: 10.1130/G35270.1

KOVACEVIĆ, M., RAKIČEVIĆ, T. & ARSOVSKI, M. (1973): Tolkuvač za geološka karta list Delčevo [Guide for geological map sheet Delčevo – in Macedonian].– Geological survey of the Republic of Macedonia, Skopje, 55 p.

KOUNOV A (2002). Thermotectonic evolution of Kraishte, Western Bulgaria.– Dissertation ETH 14946, Zurich, 219 p.

KOUNOV, A., GRAF, J., QUADT, A.V., BERNOULLI, D., BURG, J.-P., SEWARD, D., IVANOV, Z. & FANNING, M. (2012): Evidence for a “Cadomian” ophiolite and magmatic-arc complex in SW Bulgaria.– Precambrian Research, 212–213; 275–295.

LANDTWING, M., FURRER, C., REDMOND, P., PETTKE, T., GUILLONG, M. & HEINRICH, C.A. (2010): The Bingham Canyon porphyry Cu-Mo-Au deposit. III. Zoned copper-gold ore deposition by magmatic vapour expansion.– Econ. Geol., 105, 91–118.

LERCHBAUMER, L. & AUDÉTAT, A. (2012): High Cu concentrations in vapor-type fluid inclusions: An artifact?.– Geoch. et Cosmoch. Acta, 88, 255–274. doi: 10.1016/j.gca.2012.04.033

LI, J.X., QIN, K.Z. & LI, G.M. (2006): The basic characteristics of gold–rich porphyry copper deposits and their ore sources and evolving processes of high oxidation magma and ore-forming fluid.–Acta Petrol. Sin., 22, 678–88.

LI, G.M., LI, J.X., QIN, K.Z., ZHANG, T.P. & XIAO, B. (2007): High temperature, salinity and strong oxidation ore-forming fluid at Duobuza gold-rich porphyry copper in the Bangonghu tectonic belt, Tibet: evidence from fluid inclusions study.– Acta Petrol. Sin., 23, 935–952.

LI, J.X., LI, G.M., QIN, K.Z. & XIAO, B. (2011): High-temperature magmatic fluid exsolved from magma at the Duobuza porphyry copper–gold deposit, Northern Tibet.– Geofluids, 11, 134–143.

LI, N., CHEN, Y.J., PIRAJNO, F. & NI, Z.Y. (2013): Timing of the Yuchiling giant porphyry Mo system, and implications for ore genesis.– Min. Depos., 48/4, 505–524. doi: 10.1007/s00126-012-0441-4

LINDHORST, J.W. & COOK, W.G. (1990): Gindinbung gold-silver deposit, Temora.– Australas. Inst. of Min. and Metall. Monogr 14/2, 1365-1370.

LINKE, W.F. (1965): Solubilities of inorganic and metal-organic compunds. - K-Z (4th Ed.) Washington, American Chemical Society, V. 2, 1, 914 p.

LOWELL, J.D. & GUILBERT, J.M. (1970): Lateral and vertical alteration-mineralization zoning in porphyry ore deposits.– Econ. geol., 65, 373–408. doi: 10.2113/gsecongeo.65.4.373

MISRA, K. (2000): Understanding Mineral Deposits. - Kluwer Academic Publishers, Dodrecht, Netherland, 845 p.
doi: 10.1007/978-94-011-3925-0

MOORE, W.J. & NASH, J.T. (1974): Alteration and fluid inclusion studies of the porphyry copper ore body at Bingham, Utah.– Econ. Geol. 69, 631–645. doi: 10.2113/gsecongeo.69.5.631

MOORE, F. & MOORE, D.J. (1979): Fluid inclusion study of mineralization at St. Michaels Mount, Cornwall.– Trans. of the Inst. of Min. and Metall. (Sec.B), 88, 57–60.

NASH, J.T. (1976): Fluid-inclusion petrology-Data from porphyry copper deposits and application to exploration.– Geology and Resources of Copper Deposits, United States Department of Interior and Geological Survey, D1-D16.

NASH, J.T. & THEODORE, T. (1971): Ore fluids in the porphyry copper deposit at Copper Caynon, Nevada.– Econ. Geol., 66, 385–399.

POTTER, R.W. II., BABCOCK, R.S. & BROWN, D.L. (1977): New method for determining the solubility of salts in aqueous solutions at elevated temperatures.– J. Res. U.S. Geol. Surv., 5/3, 389–395.

PROFFETT, J.M. (2003): Geology of the Bajo de la Alumbrera porphyry copper–gold deposit, Argentina.– Econ. Geol., 98, 1535–1574.

REDMOND, P.B., EINAUDI, M.T., INAN, E.E., LANDTWING, M.R. & HEINRICH, C.A. (2004): Copper deposition by fluid cooling in intrusion-centered systems: New insights from the Bingham porphyry ore deposit, Utah.– Geology, 32, 217–220. doi: 10.1130/G19986.1

RICHARDS, J.P. (2003): Tectono-magmatic precursors for porphyry Cu-(Mo-Au) deposit formation.– Econ. Geol. 98, 1515–1534. doi: 10.2113/gsecongeo.98.8.1515

ROBERTSON, A., KARAMATA, S. & ŠARIĆ, K. (2009): Overview of ophiolites and related units in the Late Palaeozoic–Early Cenozoic magmatic and tectonic development of Tethys in the northern part of the Balkan region.– Lithos, 108/1–4, 1–36.

ROEDDER, E. (1971): Fluid inclusion studies on the porphyry-type ore deposits at Bingham, Utah, Butte, Montana, and Climax, Colorado.– Econ. Geol., 66, 98–120.

ROEDDER, E. (1979): Fluid inclusions as samples of ore fluids.– In: BARNES, H.L. (ed.): Geochemistry of hydrothermal ore deposits: New York, Wiley, 684–737.

ROEDDER, E. (1984): Fluid inclusions.– Rev. Min., 12, 644 p.

ROEDDER, E. (1992): Fluid inclusion evidence for immiscibility in magmatic differentiation.– Geoch. Cosmoch. Acta, 56, 5–20. doi: 10.1016/0016-7037(92)90113-W

ROEDDER, E. & COOMBS, D.S. (1967): Immiscibility in granitic melts, indicated by fluid inclusions in ejected granitic blocks from Ascension Island.– J. of Petrol 8, 417–451.

RUSK, B.G., REED, H.M. & DILLES, H.J. (2008): Fluid inclusion evidence for magmatic-hydrothermal fluid evolution in the porphyry copper-molybdenum deposit at Butte, Montana.– Econ. Geol., 103/2: 307–334. doi: 10.2113/gsecongeo.103.2.307

SANTANA, M.M.U., MOURA, M.A., OLIVO, G., BOTELHO, N.F., KYSER, T.K. & BÜHN, B. (2011): The La Unión Au ± Cu prospect, Camagüey District, Cuba: fluid inclusion and stable isotope evidence for ore-forming processes.– Min. Depos., 46/1, 91–104.

SEEDORFF, E., DILLES, J.H., PROFFETT, J.M., EINAUDI, M.T., ZUCHER, L., STAVAST, W.J.A., JOHNSON, D.A. & BARTON, M.D. (2005): Porphyry deposits: characteristics and origin of hypogene features.–Econ. Geol., 100, 251–298.

SEO, J.H. & HEINRICH, A.C. (2013): Selective copper diffusion into quartz-hosted vapor inclusions: Evidence from other host minerals, driving forces, and consequences for Cu–Au ore formation.– Geoch. et Cosmoch. Acta, 113, 60–69. doi: 10.1016/j.gca.2013.03.016

SERAFIMOVSKI, T. (1990): Metalogenija na zonata Lece-Halkidiki [Metallogeny of the Lece-Chalkidiki zone – in Macedonian]. - PhD Faculty of Mining and Geology, Stip, 380 p.

SERAFIMOVSKI, T. (1993): Strukturno-metalogenetski karakteristiki na zonata Lece-Halkidiki: Tipovi na rudni naogjalista i distribucija [Structural metallogenetic characteristics of the Lece-Chakidiki zone: Types of Mineral Deposits and Distribution – in Macedonian with extended summary in English].– Spec. ed. of RGF Stip, 1, 328 p.

SERAFIMOVSKI, T., JANKOVIC, S. & CIFLIGANEC, V. (1995): Alpine Metallogeny and Plate Tectonics in the SW Flank of the Carpatho-Balkanides.– Geol. Maced., 9/1, 3–14.

SERAFIMOVSKI, T., TOMSON, I.N. & KOCNEVA, N.T. (1997): Alpine orogenic structures and metallogeny in the Serbo-Macedonian massif and the Vardar zone of the territory of Macedonia.– In: BOEV, B. & SERAFIMOVSKI, S. (eds): Symposium- Annual Meeting Dojran, Proceed., 113–117.

SERAFIMOVSKI, T., TASEV, G., BLAZEV, K. & VOLKOV, A. (2010): Major Alpine structures and Cu-porphyry mineralization in the Serbo-Macedonian massif.– Geol. Maced., 24/1, 39–48.

SERAFIMOVSKI, T. (2012): Elaborat od izvršenite detalni geološki istražuvanja na mineralnata surovina bakar na lokalnosta Kadiica, Pehčevo [Elaborate of detailed geological explorations of copper in the Kadiica locality, Pehcevo – in Macedonian].– Faculty of Natural and Technical Sciences for DPTU Kadiica DOOEL Pehčevo, 208 p.

SHEPHERD, T., RANKIN, A.H. & ALDERTON, D.H.M. (1985): A practical guide to fluid inclusion studies.– Blackie, Glasgow, 240 p.

SHINOHARA, H. (1994): Exsolution of immiscible vapor and liquid phases from a crystallizing silicate melt: implications for chlorine and metal transport.– Geoch. et Cosmoch. Acta, 58, 5215–5221. doi: 10.1016/0016-7037(94)90306-9

SILLITOE, H.R. (1973): The tops and bottoms of porphyry copper deposits.– Econ. Geol., 68, 799–815. doi: 10.2113/gsecongeo.68.6.799

SOURIRAJAN, S. & KENNEDY, G.C. (1962): The system H2O-NaCl at elevated temperatures and pressures.– Amer. J. Sci., 260, 115–141.

STERNER, S.M., HALL, D.L. & BODNAR, R.J. (1988): Synthetic fluid inclusions. V. Solubility relations in the system NaCl-KCl-H2O under vapor saturated conditions.– Geoch. Cosmoch. Acta, 52, 989–1005. doi: 10.1016/0016-7037(88)90254-2

STOJANOV, R. (1980): Vulkanska doma Plavica, polimetalični mineralizacii i neposredni alteracii [Volcanic dome Plavica, polymetalic mineralizations and adjacent alterations – in Macedonian].– Symposia Alteration of rocks and minerals, 100 years of geological school and science in Serbia, Belgrade, p. 291.

STOJANOV, R. & ALEKSANDROV, M. (1990): Tercieren vulkanizam vo zonata Sasa-Toranica [Tertiary volcanism in the Sasa-Toranica zone – in Macedonian].– XІІ Congr. of geol. of Yugoslavia, Ohrid, 371–386.

STOJANOV, R., HADŽI-PETRUSEV, B. & ALEKSANDROV, M. (1995): Daciticrhyolitic volcanic products at Bukovic-Kadijca(Pehčevo district) and the related porphyry copper mineralization – Geol. Balk., 25-5/6, 83–90.

STOJANOVIĆ, M. (1969): Geološki sklop na poširokata oblast Bukovik (Pehčevo), so pregled na geološko-mineraloškite i genetskite karakteristiki na naogjalištata na limonitski breči [Geological setting of wider area of the Bukovik (Pehčevo), with review of geological-mineralogical and genetic features of limonite breccia deposits - in Macedonian].– Papers of Geol. Surv. of the Rep. of Maced., 14, 27–36.

TAYLOR A. V. JR. (1935): Ore deposits at Chuquicamata, Chile in Copper resources of the world. – 16th Internat. Geol. Cong., Washington, 2, 473–484.

TASEV, G. (2010): Metalogenija na polimetaličniot rudonosen system ukovik-Kadiica [Metallogeny of the polymetallic ore bearing system Bukovik-Kadiica – in Macedonian].– PhD, University “Goce Delčev”-Stip, Faculty of Mining, geology and polytechnics, 207 p.

THIERY, R., KERKHOF, AM. & DUBESSY, J. (1994): VX properties of CH4-CO2 and CO2-N2 fluid inclusions: modeling for T<31 ºC and P<400 bars.– Eur. J. Min., 6, 753–771.

THOMPSON, J.F.H., LESSMAN, J. & THOMPSON, A.J.B. (1986): The Temora goldsilver deposit: A newly recognized style of high sulfur mineralization in the Lower Paleozoic of Australia.– Econ. Geol., 81, 732–738. doi: 10.2113/gsecongeo.81.3.732

ULRICH, T., GÜNTHER, D. & HEINRICH, C.A. (2002): Evolution of a porphyry Cu-Au deposit, based on LA-ICP-MS analysis of fluid inclusions, Bajo de la Alumbrera, Argentina.– Econ. Geol., 97, 1888–1920. doi: 10.2113/gsecongeo.97.8.1889

URQUETA, E., KYSER, K., CLARK, A., STANLEY, C. & OATES, C. (2009): Lithogeochemistry of the Collahuasi porphyry Cu-Mo and epithermal Cu-Ag (-Au) cluster, northern Chile: Pearce element ratio vectors to ore.– Geochem. Expl. Envir. Anal, 9, 9–17.

VANKO, D.A., BODNAR, R.J. & STERNER, S.M. (1988): Synthetic fluid inclusions. VIII. Vapor-saturated halite solubility in part of the system NaCl-CaCl2-H2O, with application to fluid inclusions from oceanic hydrothermal systems.– Geoch. Cosmoch. Acta, 52, 2451–2456.

VEKSLER, I.V. (2004): Liquid immiscibility and its role at the magmatic-hydrothermal transition: a summary of experimental studies.– Chem. Geol., 210, 7–31. doi: 10.1016/j.chemgeo.2004.06.002

VOLKOV, A.V., TASEV, G., PROKOF’EV, V.YU., SERAFIMOVSKI, T., TOMSON, I.N. & SIDOROV, A.A. (2008): Formation Conditions of Copper Porphyry Mineralization in the Kadica–Bukovik Ore District, Eastern Macedonia.– Dokl. Earth Sci., 421/5, 769–773.

WEBSTER, J.D. (1997): Exsolution of magmatic volatile phases from Cl-enriched mineralizing granitic magmas and implications for ore metal transport.– Geoch. Cosmoch. Acta, 61, 1017–1029. doi: 10.1016/S0016-7037(96)00395-X

WEBSTER, J.D. & MANDEVILLE, C.W. (2007): Fluid immiscibility in volcanic environments.– Rev. Min. Geoch., 65, 313–62. doi: 10.2138/rmg.2007.65.10

WESTRA, G. (2005): Remaining exploration potential in the Kadiica porphyry copper prospect near Berovo, Macedonia.– Internal report prepared for Phelps Dodge Corp., 11 p.

WILKINSON, J.J. (2001): Fluid inclusions in hydrothermal ore deposits.– Lithos, 55, 229–272. doi: 10.1016/S0024-4937(00)00047-5

WILLIAMS-JONES, E.A. & HEINRICH, A.C. (2005): 100th Anniversary special paper: Vapor transport of Metals in Magmatic-Hydrothermal Systems.– Econ. Geol., 100, 1287–1312.

WORMALD, R.J. & PRICE, R.C. (1990): The gabbro-quartz monzonite-alkali granite association in southern NSW: Implications for intrusive related gold mineralization.– Geological Society of Australia Abstracts Series, 25, 265–266.

XIE, Y.L., YI, L.S., XU, J.H., LI, G.M., YANG, Z.M. & YIN, S.P. (2006): Characteristics of ore-forming fluids and their evolution for Chongjiang copper deposit in Gangdese porphyry copper belt, Tibet: evidence from fluid inclusions.– Acta Petrol. Sin., 22, 1023–1030.

ZAGORCHEV, I. (1987): Stratigraphy of the diabase-phyllitoid complex in SW Bulgaria.– Geol. Balc., 17/3, 3–14.

ZAGORCHEV, I. (1995): Pre-Palaeogene Alpine tectonics in Southwestern Bulgaria.– Geol. Balc., 25/5–6, 91–112.

ZAGORCHEV, I., MOORBATH, S. & LILOV, P. (1987): Radiogeochronological data about the Alpine magmatism in the western part of the Rhodope massif.– Geol. Balc., 17/2, 59–71.

ZAGORCHEV, I. & MILOVANOVIC, D. (2006): Deformations and metamorphism in the eastern parts of the Serbo-Macedonian Massif.– Proceed. 18th Congress Carpatho Balkan Geological Association, Belgrade, 670–673.

ZAGORCHEV, I., DABOVSKI, C. & DUMURDZANOV, N. (2008): Tectonic structure of Bulgaria and Macedonia based on TRANSMED TRANSECT III.– In: BOEV, B. & SERAFIMOVSKI, T. (eds): Proceedings: The First Congress of geologists of the Rep. of Macedonia, 75–83.

ZAGORCHEV, I., BALICA, C., BALINTONI, I., KOZHOUKHAROVA, E., DUMITRESCU, R., SABAU, G. & NEGULESCU, E. (2011A): New Isotopic Data on the Metamorphic Rocks in SW Bulgaria.–3rd International Symposium on the Geology of the Black Sea Region, Bucharest, 223–225.

ZAGORCHEV, I., BALICA, C., BALINTONI, I., KOZHOUKHAROVA, E., DUMITRESCU, R., SABAU, G. & NEGULESCU, E. (2011B): New isotopic data on the Cadomian age of the Frolosh metamorphic complex and the Struma diorite complex.– Geosciences’ 2011, Sofia, 77–78.

ZAGORCHEV, I., BALICA, C., BALINTONI, I., KOZHOUKHAROVA, E., SĂBĂU, G. & NEGULESCU, E. (2012): Palaezoic evolution of the Ograzhden Unit (Serbo-Macedonian Massif, Bulgaria and Macedonia).– In: JOVANOVSKI, M. & BOEV, B. (eds): Proceedings Book: Second Congress of Geologists of the Republic of Macedonia, Krusevo, Spec. Issue of Geol. Maced. No. III, 13–18.

ZAGORCHEV, I., BALICA, C., KOZHOUKHAROVA, E., BALINTONI, I., SĂBĂU, G. & NEGULESCU, E. (2015): Cadomian and post-cadomian tectonics west of the Rhodope Massif – The Frolosh greenstone belt and the Ograzhdenian metamorphic supercomplex.– Geol. Maced. 29/2, 101–132.

ZHANG, D.H., ZHANG, W.H. & XU. G.J. (2001): Exsolution and evolution of magmatic hydrothermal fluids and their constraints on the porphyry ore-forming system.– Earth Sci. Front., 8, 194–202.