The role of geology in the spatial prediction of soil properties in the watershed of Lake Balaton, Hungary
Main Article Content
Abstract
There is no standard methodology which allows the incorporation of geological information into digital soil mapping (DSM) despite the great potential of geology as environmental covariate in DSM. To fill this gap, in this study, a geochemical parent material classification scheme was tested on the watershed area of Lake Balaton, for which soil maps at a finer scale have not yet been created. A parent material map was prepared on the basis of a 1:100 000 surface geology map in order to make the incorporation of soil modelling and mapping possible. Legacy data of 12400 soil sample points was used in order to examine the role of geology in the quantitative distribution of some soil properties and element content (liquid limit, soil organic carbon, pH(KCL), CaCO3, Mg, Cu, Zn, Mn). Results confirm that the SiO2 content of the parent material influences the properties of the derived soils. In the second part of the study Random Forest models were developed for three major soil properties (liquid limit, soil organic carbon, pH) with the use of additional environmental covariates: elevation, slope, aspect, curvature, topographic position index (TPI), annual average temperature, annual average precipitation, remote sensing based normalized difference vegetation index (NDVI) and land cover information. The performance and accuracy of the models were evaluated on the basis of the coefficient of determination (R2) and root mean square error (RMSE), calculated on a randomly selected validation dataset (20% of the database). The models performed with R2 values of 0.72, 0.6 and 0.68 for liquid limit, soil organic carbon and pH respectively. The importance of variables was also examined in the RF models, and this demonstrated that while geology is among the best-performing predictors, in neither case is it the most important variable. Ninety metre resolution maps of the three major soil properties were compiled by making spatial predictions with the RF models developed here. For validation of the maps, an independent soil database was used, which showed that the prediction performed well on the cultivated area where the concordance correlation coefficients (CCC) were 0.73, 0.73 and 0.69 for liquid limit, pH and soil organic carbon respectively.
Downloads
Article Details
Authors have copyright and publishing rights on all published manuscripts.
References
ARANY S. (1943) A talajok rögszerkezete [The aggregate structure of soils-in Hungarian].- Mezőgazdasági Kutatások, XVI., 220-249.
ARAUJO, M. A., ZINN, Y. L., LAL, R. (2017): Soil parent material, texture and oxide contents have little effect on soil organic carbon retention in tropical highlands. - Geoderma 300, 1–10. doi: 10.1016/j.geoderma.2017.04.006
BARANYAI F., FEKETE, A., KOVÁCS, I. (1987): A magyarországi talajtápanyag-vizsgálatok eredményei [Results of the soil nutrient assesment in Hungary-in Hungarian].- Mezőgazdasági Kiadó, Budapest, 189 p.
BEGUIN, J., FUGLSTAD, G.A., MANSUY, N., PARÉ, D. (2017): Predicting soil properties in the Canadian boreal forest with limited data: Comparison of spatial and non-spatial statistical approaches. – Geoderma, 306, 195-205. doi: 10.1016/j.geoderma.2017.06.016
BEHRENS, T., FÖRSTER, H., SCHOLTEN, T., STEINRÜCKEN, U., SPIES, E.D., GOLDSCHMITT, M. (2005): Digital soil mapping using artificial neural networks. – Journal of Plant Nutrition and Soil Science, 168, 1-13. doi: 10.1002/jpln.200421414
BUDAI, T., CSILLAG, G. [eds.] (1999): A Balaton-felvidék földtana [Geology of the Balaton Highland - in Hungarian]. - Magyar Állami Földtani Intézet, Budapest, 257 p.
BOHN, P. (1979): A Keszthelyi-hegység regionális földtana [Geology of the Keszthely Hills – in Hungarian]. - Geologica Hungarica. Series Geologica 19, 197 p.
BREIMAN, L. (2001): Random forests. - Machine Learning, 45/1, 5-32. doi: 10.1023/A:1010933404324
CASAGRANDE, A. 1932. Research on the Atterberg limits of soils. - Public Roads, 13/8, 121–136.
CAMERA, C., ZOMENI, Z, NOLLER, J.S., ZISSIMOS, A.M., CHRISTOFOROU, I.C., BRUGGEMAN, A. (2017): A high resolution map of soil types and physical properties for Cyprus: A digital soil mapping optimization. – Geoderma, 285, 35–49. doi: 10.1016/j.geoderma.2016.09.019
CLARKE, F. W. (1920) The Data of Geochemistry. - Bulletin of the U.S. Geological Survey. Washington, 832 p.
DHARUMARAJAN, S., HEGDE, R., SINGH, S.K. (2017): Spatial prediction of major soil properties using Random Forest techniques - A case study in semi-arid tropics of South India. - Geoderma Regional, 10, 154–162. doi: 10.1016/j.geodrs.2017.07.005
EMBEY-ISZTIN, A., DOBOSI, G., JAMES, D., DOWNES, H., POULTIDIS, C., SCHARBERT, H.G. (1993): A compilation of new major, trace element and isotope geochemical analyses of the young alkali basalts from the Pannonian Basin. - Fragmenta Mineralogica and Palaeontologica, 16, 5-26.
EUROPEAN ENVIRONMENT AGENCY (2013): CORINE Land Cover (CLC) 2006, Version 17, Kopenhagen K, Denmark. CRC/TR32 Database (TR32DB).
FAO (2006): Guidelines for Soil Descriptions. 4th edition. Food and Agriculture Organization of the United Nations. Rome, 77 p.
FICK, S.E., HIJMANS, R. J. (2017): Worldclim 2: New 1-km spatial resolution climate surfaces for global land areas -International Journal of Climatology. doi: 10.1002/joc.5086
GRAY, J.M., BISHOP, T.F.A., WILFORD, J.R. (2016): Lithology and soil relationships for soil modelling and mapping. - Catena, 147, 429–440. doi: 10.1016/j.catena.2016.07.045
GU, J., HUANG, Z., FAN, H., JIN, Z., YAN, Z., ZHANG, J. (2013): Mineralogy, geochemistry, and genesis of lateritic bauxite deposits in the Wuchuan–Zheng'an–Daozhen area, Northern Guizhou Province, China. - Journal of Geochemical Exploration 130, 44-59. doi: 10.1016/j.gexplo.2013.03.003
GYALOG, L., SÍKHEGYI, F. [eds.] (2005): Magyarország földtani térképe, M=1:100 000. [The Geological Map of Hungary, 1:100 000 – in Hungarian]. - Magyar Állami Földtani Intézet kiadványa. Budapest.
GYALOG, L., HORVÁTH, I. (2004): A Velencei-hegység és a Balatonfő földtana [Geology of the Velence Hills and the Balatonfő – in Hungarian]. - Magyar Állami Földtani Intézet, Budapest, 316 p.
HIJMANS, R.J. (2016): raster: Geographic Data Analysis and Modeling. R package version 2.5-8. https://CRAN.R-project.org/package=raster
JARVIS, A., REUTER, H.I., NELSON, A., GUEVARA, E. (2008): Hole-filled SRTM for the globe Version 4, available from the CGIAR-CSI SRTM 90m Database (http://srtm.csi.cgiar.org).
JENNESS, J. (2006): Topographic Position Index extension for ArcView 3.x,v.1.3a. Jenness Enterprises. [online: www.jennessent.com/arcview/tpi.htm]
JENNY, H. (1941): Factors of soil formation. - McGray-Hill Book Company, New York, 281 p.
JUHÁSZ, Á. (1962): A balatonfelvidéki permi homokkőösszlet kvarcporfiranyagának eredete [The origin of the quartz porphyry material in the Permian sandstones of Balaton Highland – in Hungarian]. - Földtani Közlöny, 92/2., 160-173.
KOCSIS, M., TÓTH, G., BERÉNYI ÜVEGES, J., MAKÓ, A. (2014): Az Agrokémiai Irányítási és Információs Rendszer (AIIR) adatbázis talajtani adatainak bemutatása és térbeli reprezentativitás-vizsgálata [Presentation of soil data from the National Pedological and Crop Production Database and investigations on spatial representativeness – in Hungarian]. - Agrokémia és Talajtan, 63, 223-248.
KUHN, M. (2008): Building predictive models in R using the caret package.– Journal of Statistical Software, 28/5, 1–26. doi: 10.18637/jss.v028.i05
LIAW, A. & WIENER, M. (2002). Classification and Regression by random Forest.– R News 2/3, 18–22.
MCBRATNEY, A.B., MENDONCA SANTOS, M.L., MINASNY, B. (2003): On digital soil mapping. – Geoderma, 117, 3-52. doi:10.1016/S0016-7061(03)00223-4
PETTIJOHN, F.J., (1963): Chemical composition of sandstone – excluding carbonate and volcanic sands. In: Fleischer, M. (ed.): Data on Geochemistry. Geological Survey Professional Paper. - United States Department of Interior. US Government Printing Office, Washington.
PRASAD, A.M., IVERSON, L.R. & LIAW, A., (2006): Newer classification and regression tree techniques: bagging and random forests for ecological prediction.– Ecosystems, 9, 181–199. doi:10.1007/s10021-005-0054-1
R CORE TEAM (2017): R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.
RODRÍGUEZ-LADO, L., LADO, M. (2017): Relation between soil forming factors and scaling properties of particle size distributions derived from multifractal analysis in topsoils from Galicia (NW Spain). – Geoderma, 287, 147–156. doi: 10.1016/j.geoderma.2016.08.005
SARBAS, B., NOHL, U. (2008): The GEOROC database as part of a growing geoinformatics network. In: BRADY, S.R., SINHA, A.K., GUNDERSEN, L.C. (eds.): Geoinformatics 2008—Data to Knowledge, Proceedings: U.S. Geological Survey Scientific Investigations Report 2008-5172 (2008), 42-43.
SILVA, Y.J.A.B., NASCIMENTO, C.W.A., BIONDI, C.M., STRAATEN, P., SOUZA JR., V.S., FERREIRA, T.O. (2016): Weathering rates and carbon storage along a climosequence of soils developed from contrasting granites in northeast Brazil. – Geoderma, 284, 1–12. doi: 10.1016/j.geoderma.2016.08.009
STEFANOVITS, P.- FILEP, GY.- FÜLEKY, GY. (2005): Talajtan. - Mezőgazda Kiadó, Budapest, 470 p.
TÓTH, G., HENGL, T., HERMANN, T., MAKÓ, A., KOCSIS, M., TÓTH, B., BERÉNYI ÜVEGES, J. (2015): Magyarország mezőgazdasági területeinek talajtulajdonság-térképei [Soil property maps of the agricultural area in Hungary- in Hungarian]. Institute for Environment and Sustainability, JRC, Ispra, 63 p., doi:10.2788/318926
ÚJVÁRI, G., VARGA, A., BALOGH-BRUNSTAD, ZS. (2008): Origin, weathering, and geochemical composition of loess in southwestern Hungary. - Quaternary Research, 69, 421–437. doi:10.1016/j.yqres.2008.02.001
VAN ENGELEN, V., DIJKSHOORN, J., [eds.] (2013): Global and National Soils and Terrain Digital Databases (SOTER), Procedures Manual, version 2.0. ISRIC Report 2013/04. Wageningen, the Netherlands: ISRIC — World Soil Information, 192 p.
VAYSSE, K., LAGACHERIE, P. (2015): Evaluating Digital Soil Mapping approaches for mapping GlobalSoilMap soil properties from legacy data in Languedoc-Roussillon (France). -Geoderma Regional, 4, 20–30. doi: 10.1016/j.geodrs.2014.11.003
VÁRALLYAY, GY. (2013): Soil Scientific Basis of Agricultural Water Management. - University of Debrecen, Service Sciences Methodology Centre, Debrecen, 219 p.
WEISS, A. (2001): Topographic Position and Landforms Analysis. Poster presentation, ESRI User Conference, San Diego, CA.
WIESMEIER, M., BARTHOLD, F., BLANK, B., KÖGEL-KNABNER, I., (2011): Digital mapping of soil organic matter stocks using Random Forest modeling in a semi-arid steppe ecosystem. - Plant Soil, 340, 7–24. doi:10.1007/s11104-010-0425-z
XIONG, X., GRUNWALD, S., MYERS, D.B., KIM, J., HARRIS W.G., COMERFORD, N.B. (2014): Holistic environmental soil-landscape modeling of soil organic carbon. - Environmental Modelling & Software, 57, 202-215. doi:10.1016/j.envsoft.2014.03.004