Chemical, mineralogical and structural features of native and expanded perlite from Macedonia
Main Article Content
Abstract
The physico-mechanical, chemical and mineralogical characteristics of volcanic glass (perlite) from the Mariovo region (Macedonia) as well as the mineralogical changes that occur during its thermal treatment were investigated to demonstrate its utilization for industrial use. The native perlite was characterized by chemical analysis, X-ray powder diffraction (XRPD), infrared (IR) spectroscopy, thermal analysis (TGA/DTA), scanning electron microscopy (SEM-EDX), transmission electron microscopy (TEM), and solid- state NMR. The chemical examination suggests that the perlite represents an acidic volcanic rock with a high percentage of SiO2 (72.45%), high in alkali metal oxides (4.21 wt.% K2O, 3.56 wt.% Na2O), with a loss of ignition 3.54 wt.%. Results from the XRPD indicated major amorphous behaviour, with low amounts of feldspars, quartz, and cristobalite. SEM examinations revealed glassy structure with presence of certain pores (dimensions ranging from 50–100 μm). The determined expansion coefficient was 20 times its original volume. XRPD of expanded perlite compared to the native perlite depicted new intensive peaks of cristobalite. SEM and TEM revealed irregular morphology with broken or ragged edges. On the basis of the chemical and mineralogical composition, the studied perlite is classified as an appropriate material suitable as ceramic flux to lower the sintering temperature.
Downloads
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors have copyright and publishing rights on all published manuscripts.
References
Arifuzzaman Md., Ho Sung Kim, Novel flexural behaviour of sandwich structures made of perlite foam/sodium silicate core and paper skin, Constr. Build Mater. 148 (2017) 321–333.
Arifuzzaman Md., Kim H. S., Novel mechanical behaviour of perlite/sodium silicate composites, Constr. Build Mater. 93 (2015) 230–240.
Arifuzzaman Md., Kim H. S., Prediction and evaluation of density and volume fractions for the novel perlite composite affected by internal structure formation, Constr. Build Mater. 141 (2017) 201–215.
Breese, R.O.Y., Rhyolite domes and flows at No Aqua Peaks, Proceeding of the 35th Annual Field Conference, Socorro, New Mexico Geological Society, pp. 373–374, 1984.
Burriesci N., Arcoraci C., Antonucci PL., Polizzotti G., Physico-chemical characterization of perlite of various origins, Mater. Lett. 3 (1985) 103–110.
Cekova B., Pavlovski B., Spasev D., Reka A., Structural examinations of natural raw materials pumice and trepel from Republic of Macedonia, Proceedings of the XV Balkan Mineral Processing Congress, Sozopol, Bulgaria, pp. 73–75, 2013
Celik A. G., Depci T., Kılıc A. M., New lightweight colemanite-added perlite brick and comparison of its physicomechanical properties with other commercial lightweight materials, Constr. Build Mater. 62 (2014) 59–66.
Celik A. G., Kilic A. M., Cakal G. O., Expanded perlite aggregate characterization for use as a lightweight construction raw material, Physicochem. Probl. Miner. Process. 49 (2013) 689−700.
El Mir A., Nehme S. G., Utilization of industrial waste perlite powder in self-compacting concrete, J. Clean. Prod. 156 (2017) 507–517.
Evans, A.M., Perlite, Ore Geology and Industrial Minerals, 3rd Edition, Oxford, Boston, Blackwell Science, pp. 295–296, 1993.
Gifkins C., Herrmann W., Large R., Altered Volcanic Rocks, Center for Ore Deposit Research, National Library of Australia, pp. 100–101, 2015.
Gürtürk M., Oztop H. F., Hepbasli A., Comparison of exergoeconomic analysis of two different perlite expansion furnaces, Energy 80 (2015) 589–598.
Harben P.W., Kuzvart M., Industrial Minerals – A global geology, Industrial minerals Information, London, Metals Bulletin, pp. 280–288, 1997.
Irani M., Amjad M., Mousavian M. A., Comparative study of lead sorption onto natural perlite, dolomite and diatomite, Chem. Eng. J. 178 (2011) 317– 323.
Jing Q., Fang L., Liu H., Liu P., Preparation of surface-vitrified micron sphere using perlite from Xinyang, China, Appl. Clay Sci. 53 (2011) 745–748.
Jovanovski G., Boev B., Makreski P., Minerals from the Republic of Macedonia with an Introduction to Mineralogy, Macedonian Academy of Sciences and Arts, Skopje, pp 1–652, 2012.
Kabra S., Katara S., Rani A., Characterization and Study of Turkish Perlite, International Journal of Innovative Research in Science, Engineering and Technology, 2 (2013) 4319–4326.
Karaıpeklı A., Sarı A. & Kaygusuz K., Thermal Characteristics of Paraffin/Expanded Perlite Composite for Latent Heat Thermal Energy Storage, Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 31 (2009) 814–823.
Kaufhold S., Reese, A., Schwiebacher, W., Dohrmann, R., Grathoff, G.H., Warr, L.N., Halisch, M., Müller, C., Schwarz-Schampera, U., Ufer., K. Porosity and distribution of water in perlite from the island of Milos, Greece. SpringerPlus 3 (2014) 598 (pages 10).
Kogel J. E., Trivedi N. C., Baker J. M., Kurkowski S. T., Industrial Minerals & Rocks, 7th Edition, Society for Mining, Metallurgy and Exploration, Inc., p. 865, 2006
Kolvari E., Koukabi N., Hosseini M. M., Perlite: A cheap natural support for immobilization of sulfonic acid as a heterogeneous solid acid catalyst for the heterocyclic multicomponent reaction, J. Mol. Catal. A-chem 397 (2015) 68–75.
Kongkachuichay P., Lohsoontorn, P., Phase Diagram of Zeolite Synthesized from Perlite and Rice Husk Ash, ScienceAsia 32 (2006) 13–16.
Koukouzas N., Volcanic glass (perlite) of Kimolos island, Greece: mineral chemistry and structure, Proceedings of the 8th International, Patras, Bulletin of the Geological Society of Greece, XXXII/3, 313–332, 1998.
Li H, Tomozawa M., Mechanical strength increase of abraded silica glass by high pressure water vapor treatment, J. Non-cryst. Solids 168 (1994) 287–292.
Majouli, A., Tahiri, B., Younssi, S. A., Loukili, H., Albizane, A., Elaboration of new tubular ceramic membrane from local Moroccan Perlite for microfiltration process. Application to treatment of industrial wastewaters, Ceram. Int. 38 (2012) 4295–4303.
Makreski P., Jovanovski G., Kaitner B., Minerals from Macedonia. XXIV. Spectra-structure characterization of tectosilicates, J. Mol. Struct. 924–926 (2009) 413–419.
Makreski P., Jovanovski G., Minerals from Macedonia. IX. Distinction between some Rhombohedral Carbonates by FTIR Spectroscopy, Bull. Chem. Technol. Macedonia, 22 (2003) 25–32.
Oktay B.M., Odabaş E., Determining Mechanical and Physical Properties of Phospho-Gypsum and Perlite-Admixtured Plaster Using an Artificial Neural Network and Regression Models, Pol. J. Environ. Stud. 26 (2017) 2425–2430.
Pavlovski B., Jančev S., Petreski L., Reka A., Bogoevski S., Boškovski B., Trepel – a peculiar sedimentary rock of biogenetic origin from the Suvodol village, Bitola, R. Macedonia, Geologica Macedonica, 25 (2011) 67–72.
Pichór, W., Janiec, A., Thermal stability of expanded perlite modified by mullite, Ceram. Int. 35 (2009) 527–530.
Rashad A. M., A synopsis about perlite as building material – A best practice guide for Civil Engineer, Constr. Build Mater. 121 (2016) 338–353.
Reka, A. A., Pavlovski B., Makreski P., New optimized method for low-temperature hydrothermal production of porous ceramics using diatomaceous earth, Ceram. Int. 43 (2017) 12572–12578.
Reka A. A., Anovski T., Bogoevski, S., Pavlovski, Boškovski, B., Physical-chemical and mineralogical-petrographic examinations of diatomite from deposit near village of Rožden, Republic of Macedonia, Geologica Macedonica, 28 (2014) 121–126.
Rodriguez J., Soria F., Geronazzo H., Destefanis H., Modification and characterization of natural aluminosilicates, expanded perlite, and its application to immobilise α – amylase from A. oryzae, J. Mol. Catal. B-enzym, 133 (2016) S259–S270.
Roulia M., Chassapis K., Kapoutsis J. A., Kamitsos E. I., Savvidis T., Influence of thermal treatment on the water release and the glassy structure of perlite, J. Mater. Sci. 41 (2006) 5870–5881.
Rózycka A., Pichór P., Effect of perlite waste addition on the properties of autoclaved aerated Concrete, Constr. Build Mater. 120 (2016) 65–71.
Shastri D., Kim H. S., A new consolidation process for expanded perlite particles, Constr. Build Mater. 60 (2014) 1–7.
Sodeyama K., Sakka Y., Preparation and Utilization of Fine Expanded Perlite, Key. Eng. Mat. 280–283 (2005) 701–706.
Sodeyama K., Sakka Y., Kamino Y. and Seki H., Preparation of fine expanded perlite, J. Mater. Sci. 34 (1999) 2461–2468.
Šontevska V., Jovanovski G., Makreski P., Minerals from Macedonia. XIX. Vibrational spectra of some sheet silicate minerals, J. Mol. Struct. 834–836 (2007) 318–327.
Spasovski O., Spasovski D., The potential of the nonmetallic mineral resources in the Republic of Macedonia, Geologica Macedonica 26(3) (2012) 91–94.
Sun D., Wang L., Utilization of paraffin/expanded perlite materials to improve mechanical and thermal properties of cement mortar, Constr. Build Mater. 101 (2015) 791–796.
Varga P., Lexa J., Uhlík P., Rajnoha M., Characterization of perlites from Jastrabá and Lehôtka pod Brehmi deposits, Geology, Geophysics & Environment, 41 (2015) 146–146.
Varuzhanyan Av. A., Varuzhanyan Ar. A., Varuzhanyan H. A., A Mechanism of Perlite Expansion, Inorg. Mater. 42 (2006) 1039–1045.
Vijayaraghavan K., Raja F. D., Experimental characterisation and evaluation of perlite as a sorbent for heavy metal ions in single and quaternary solutions, J. Water Process Engineering 4 (2014) 179–184.
Wheelwright, W., Cooney, R. P., Ray, S., Zujovic, Z., Karnika de Silva, Ultra-high surface area nano-porous silica from expanded perlite: Formation and characterization, Ceram. Int. 43 (2017) 11495-11504.
Zafirovski S., Jasmakovski B., Zlatanovic V., Pavlovski B., Use of perlites in the ceramic industry, 2nd Int. Conf. of Natural Glasses, Prague, pp. 169–175, 1987.
Zhang J., Liu Y., Feng T., Zhou M., Zhao L., Zhou A., Li Z., Immobilizing bacteria in expanded perlite for the crack self-healing in Concrete, Constr. Build Mater. 148 (2017) 610–617.
Zujovic, Z., Wheelwright, W. V. K, Kilmartina, P. A., Hanna, J. V., Cooney, R. P., Structural investigations of perlite and expanded perlite using 1H, 27Al and 29Si solid-state NMR, Ceram. Int. 44 (2018) 2952-2958.