Geochemical characteristics of different iron ore types from the Southern Tomašica deposit, Ljubija, NW Bosnia

Main Article Content

Vesnica Garašić
Ivan Jurković

Abstract

Pulverized limonite ore from a Pleistocene–Quaternary lake deposit and compact limonite ore from the Olistostrome member of the Javorik flysch formation, in the Southern Tomašica iron ore deposit, were investigated and compared with different types of siderite and ankerite, limestone and carbonate shale from the same location in order to determine their possible protolith. Two limonite types display a notably distinct REE pattern, REE fractionations, Eu anomalies and other trace element and main oxide content. The REE pattern of compact limonite is characterized by relatively low light ((La/Sm) N = 2.87), heavy ((Gd/Yb) N = 0.98) and total ((La/Yb) = 3.19) REE fractionations, a strong positive Eu anomaly (Eu/Eu* = 2.11) and weakly expressed negative Ce anomaly (Ce/Ce* = 0.82). The compact limonite and siderite REE patterns almost overlap suggesting a common REE source. The same is valid for their Zr/TiO2 N  ratios (0.040 in the compact limonite, 0.033–0.053 in the siderites). Pulverized limonite shows remarkably different REE patterns and the highest REE concentrations, (up to 6 to 13 times higher relatively to the other samples). Its REE fractionation pattern ((La/Sm) N  = 3.68, (Gd/Yb) N = 1.58, (La/Yb) N = 9.41, Eu/Eu* = 1.10 and Ce/Ce*= 0.81) is very similar to those in the carbonate shale, identifying it as the possible protolith of pulverized limonite. The same is valid for the Zr/TiO  ratios (0.025 in pulverized limonite and 0.017 in carbonate shale). The REE pattern of fine grained ankerite ((La/Yb) 2 N = 2.15, Eu/Eu* = 1.95, Ce/Ce* = 0.78) and its Zr/TiO  ratio (0.030) are similar to those in siderite, and could, assuming extensive contamination of pulverized limonite, also represent its protolith. However, the REE patterns of coarse grained ankerite exhibit remarkable depletion of LREE over HREE and a strong reverse LREE pattern ((La/Yb) N  =0.05–0.20, (La/Sm) N = 0.04–0.10, (Gd/Yb) N 2 = 1.77–1.91). They have (similar to the other studied samples), a positive Eu anomaly (Eu/Eu* = 2.16–2.75) and negative Ce anomaly (Ce/Ce* = 0.32–0.83). Their Zr/TiO  ratio (0.004–0.010) excludes coarse grained ankerite as the possible protolith of pulverized limonite. 


Downloads

Download data is not yet available.

Article Details

Section
Original Scientific Papers
Author Biographies

Vesnica Garašić

Faculty of Mining, Geology and Petroleum Engineering

Ivan Jurković

Faculty of Mining, Geology and Petroleum Engineering

References

BOROJEVIĆ ŠOŠTARIĆ, S. (2004): Geneza sideritno-baritno-polisul-fi dnih rudnih ležišta u paleozoiku Unutrašnjih Dinarida [Genesis of siderite-barite-polysulfi de ore deposit in Paleozoic of Inner Dinar-ides – in Croatian].– Unpubl. Master Theses, University of Zagreb, Zagreb, 120 p.

CAMPBELL, A.C., PALMER, M.R., KLINKHAMMER, G.P., BO-WERS, T.S., EDMOND, J.M., LAWRENCE, J.R., CASEY, J.F., THOMPSON, G., HUMPHRIS, S., RONA, R & KARSON, J.A. (1988): Chemistry of hot springs on the Mid-Atlantic Ridge.– Na-ture, 335, 514–519.

CVIJIĆ, R. (1986): Mineralni pigmenti ljubijske metalogenetske oblas-ti [Mineral pigments of Ljubija metallogenic province – in Ser-bian].– XI kongres geologa Jugoslavije, Tara 1986, Knjiga 4, 114–127.

CVIJIĆ, R. (2001): Mineralni resursi željeza, pelitoidne rude Ljubijske metalogenetske oblasti i perspektive razvoja [Iron ore resurses, pelitoid ores of the Ljubija metallogenic province and perspective of the development – in Serbian with English summary].– PhD The-sis, Faculty of Mining and Geology, Belgrade, 154 p.

GRADSTEIN, F., OGG, J. & SMITH, A. (2006): A Geologic Time Scale.– Cambridge, University Press, 589 p.

GROMET, L.P., DYMEK, R.F., HASKIN, L.A. & KOROTEV, R.L. (1984): The “North American Shale Composite”: its compilation, major and trace element characteristics.– Geochim. Cosmochim. Ac., 48, 2469–2482.

GRUBIĆ, A. & PROTIĆ, LJ. (2003): Studija strukturnih i genetskih ka-rakteristika Tomašičkog rudnog polja [The study of structural and genetical characteristics of Tomašica ore fi eld – in Serbian].– In: GRUBIĆ, A. & CVIJIĆ, R. (eds.): Novi prilozi za geologiju i met-alogeniju rudnika gvožđa “Ljubija” [New Contribution to the Geol-ogy and Metallogeny of the Ljubija Iron Ore Mine – in Serbian]. Institute of Mining Prijedor and Mines of Iron ore “Ljubija” Pri-jedor, Prijedor, 63–134.

GRUBIĆ, A., PROTIĆ, LJ., FILIPOVIĆ, I. & JOVANOVIĆ, D. (2000): New data on the Paleozoic of the Sana-Una area.– In: Proceedings of the International symposium Geology and Metallogeny of the Dinarides and the Vardar zone, ANURS, Banja Luka, 49–54.

HU, X., WANG, Y.L. & SCHMITT, R.A. (1988): Geochemistry of sed-iments on the Rio Grande Rise and the redox evolution of the South Atlantic Ocean.– Geochim. Cosmochim. Ac., 52, 201–207.

JURIĆ, M. (1967): Izvještaj o regionalnim istraživanjima paleozoika Sane u 1966. godini [Report about the regional studies of Sana Pal-aeozoic in year 1966 – in Serbian].– Geološki zavod u Sarajevu. Izveštaj u fondu stručnih dokumenata RŽR Ljubija, Prijedor.

JURIĆ, M. (1969): Rudna ležišta o naslagama Omarsko–Prijedorskog polja [Ore deposits about the sequences of Omarska-Prijedor fi eld].– Geol. glasnik, 13, 271–291, Sarajevo.

JURIĆ, M. (1971): Geologija područja sanskog paleozoika u sjeveroza-padnoj Bosni [Geology of Sana Palaeozoic area in NW Bosnia – in Croatian].– Geološki glasnik XI, Sarajevo, 146 p.

JURKOVIĆ, I. (1961): Minerali željeznih rudnih ležišta Ljubije kod Pr-ijedora [Minerals of Ljubija iron ore deposit near Prijedor –in Croatian with English summary].– Geol. vjesnik, 14, 161–220.

LOGOMERAC, V. (1960): Priprema Ljubijske sitnozrne rude “Branda” za preradu u visokoj peći [Preparation of the fi ne-grained Ljubija ore “Brand” for the processing in blast furnace].– Elaborat, Fond dokumenata “Željezara Sisak”, 97 p.

McLENNAN, S.M. (1989): Rare earth elements in sedimentary rocks: infl uence of provenance and sedimentary processes.– In: LIPIN, B.R. & McKAY, G.A. (eds.): Geochemistry and mineralogy of rare earth elements. Reviews in Mineralogy, 21, 169–200.

MICHARD, A. & ALBAREDE, F. (1986): The REE content of some hydrothermal fl uids.– Chem. Geol., 55, 51–60.MICHARD, A. (1989): Rare earth element systematics in hydrotehrmal fl uids.– Geochim. Cosmochim. Ac., 53, 745–750.

MÖLLER, P. (1983): Lanthanoids as a geochemical probe and prob-lems in lanthanoid geochemistry-distribution and behavior of lan-thanoids in non-magmatic phases.– In: SINHA, S.P. (ed.): Sys-tematics and the properties of the Lanthanides, NATO Advanced Studies Institute Series, Series C, Mathematics and Physics Scien-ces, 109, 561–616.

MÖLLER, P., DULSKI, P., SAVASCIN, Y., CONRAD, M. (2004): Rare earth elements, yttrium and Pb isotope ratios in thermal spring and well waters of West Anatolia, Turkey: a hydrochemical study of their origin.– Chem. Geol., 206, 97–118.

MORRIS, R.C. (1980): A textural and mineralogy study of the relation-ship of iron ore to banded-iron formations in the Hamersley Iron Province of Western Australia.– Econ. Geol., 75, 184–209.

OLIVAREZ, A.M. & OWEN, R.M. (1991): The europium anomaly of seawater: implications for fl uvial versus hydrothermal REE inputs to the oceans.– Chem. Geol., 92, 317–328.

PALINKAŠ, A.L. (1988): Geokemijske karakteristike paleozojskih met-alogenetskih područja: Samoborska gora, Gorski Kotar, Lika, Ko-rdun i Banija [Geochemical characteristics of Paleozoic metallo-genic regions: Samoborska gora, Gorski Kotar, Lika, Kordun and Banija – in Croatian with English summary].– Unpubl. PhD The-ses, University of Zagreb, 108 p.

PALINKAŠ, A.L. (1990): Siderite-barite-polysulfi de and early continen-tal rifting in Dinarides.– Geol. vjesnik, 43, 181–185.

PALINKAŠ, A.L., BOROJEVIĆ, S., STRMIĆ, S., PROCHASKA, W., SPANGENBERG, J.E. (2003): Siderite-hematite-barite-polysulfi de mineral deposits, related to the Early intra-continental Tethyan rift-ing, Inner Dinarides.– In: ELIOPOULOS et al. (eds.): Mineral Ex-ploration and Sustainable Development, Millpress, Rotterdam, 1221–1224.

PODUBSKI, V. (1969): Litostratigrafski razvitak paleozoika u sjevero-zapadnoj Bosni [Lithostratigraphic development of Palaeozoic in NW Bosnia – in Serbian].– Geol. glasnik, 12, Sarajevo, 165–195.

SCHWIN, G. & MARKL, G. (2005): REE systematics in hydrothermal fl uorite.– Chem. Geol., 216, 225–248.

STRMIĆ PALINKAŠ, S., SPANGENBERG, J.E. & PALINKAŠ, A.L. (2009): Organic and inorganic geochemistry of Ljubija siderite deposits, NW Bosnia and Herzegovina.– Miner. Deposita, 44/8, 893–913.

SUN, S.S. & MCDONOUGH, W.F. (1989): Chemical and isotopic sys-tematics of oceanic basalts: implications for mantle composition and processes.– In: Magmatism in the ocean basins, Geological So-ciety, Special Publication, 42, 313–345.

ŠARAC, M. (1981): Metalogenetske karakteristike rudnosneoblasti Ljubije [Metallogenic chara-cteristics of the Ljubija ore-bearing area – in Serbian].– Unpubl. PhD Theses, University of Belgrade, 135 p.

ŠARAC, M. & VITALJIĆ, B. (1973): Omarska – povećani sirovinski potencijal, Rudarsko–metalurškog kombinata “Zenica” [Omar-ska – increased raw material potential of the ore and metallurgical combine “Zenica” – in Serbian].– Čelik, 45, Zenica, 17–21.

TAYLOR, S.R. & McLENNAN, S.M. (1985): The continental crust: its composition and evolution.– Blackwell, Oxford, U.K., 312 p.

WINCHESTER, J.A. & FLOYD, P.A. (1977): Geochemical discrimina-tion of different magma series and their differentiation products us-ing immobile elements.– Chem. Geol., 20, 325–343.